Maturation of iBALT can be mediated by vaccination and serve as backdoor for T cells to the *Mycobacterium tuberculosis* (Mtb) infected lung

6th Global Forum on TB Vaccines, February 23rd 2022

Thomas Lindenstrøm
Rasmus Mortensen
Statens Serum Institut, Copenhagen, Denmark
TL & RM are employed at Statens Serum Institut (a non-for profit Governmental Research Institute).

Data presented has been funded by NIH grant 1R01AI134246-01.

TL has no conflict of interest. RM is co-inventor on a patent covering the H107 vaccine.
The TB granuloma contain or are associated with iBALTs

- Granulomas contain or are associated to tertiary lymphoid structures (TLS) called iBALT that develop in the lung during Mtb infection (Mice, NHP, Man)

- iBALTs associated with good TB control in animal models

- Different maturation states
 - Loose lymphoid follicles ⇒ HEV+iBALTs

- IL-17-producing subsets implicated in formation

Kauffman et al., 2017

Immunization with CAF01 leads to significant protection and less pathology.
s.c. immunization with CAF01 drives Th1/Th17 and promotes/matures iBALT

TF+ve E6 Tetramer specific CD4 T cells

% IFN-γ + - + -
IL-17 + - + -

0.006

% of E6-tet+iv- neg

Lung cells

Wk8

H107/CAF01

Saline

CD38

GL7

GC Pre-GC

iv-ve B220+IgD- cells

10^3

10^4

10^5

IgD- B cells

Lung

HEV (F1; all sLex)

HEV (MECA-79; PNADs (sulfo-sLex))

Saline

CD4

Immunized

Week 4 p.i.

Week 9 p.i.
Can HEV+iBALT serve as an direct route into the TB granuloma?

"Conventional route"

Migration into lung interstitium
- Partly CXCR3 dependent
- Likely dependent on the cumulative effect of multiple chemokine receptors

Hoft. et al., 2019
Woodworth et al., 2017
Sallin et al., 2017

"Backdoor"

However, access to the granuloma core is a major impediment for control of Mtb

Gern et al., 2021
Kauffman et al., 2017
Srivastava 2013
CAN iBALT BE A BACKDOOR TO THE GRANULOMA?

- T cells
- 'Marked' T cells
- Dye
- Transfer
- Infected + Immunized with H107/CAF01
- Wk 6 infected recipients
- T cell homing/Microscopy
- Analysis

Leukocyte extravasation

+ HEV blocking
Preliminary data suggests a role for HEV-mediated entry to the Mtb infected lung

Lymph node entry of T cells from peripheral blood occurs exclusively through HEV-mediated interactions

- iBALT promoting vaccines can facilitate entry through HEV
- Ongoing studies to reveal positioning of cells
CONCLUSIONS

- The Th1/Th17 inducing vaccine H107/CAF01 promotes the development of fully mature iBALT in infected mice.
 - In comparison to unimmunized mice, immunized mice display highly organized iBALTs with clear formation of high endothelial venules (HEVs), aggregated T cell zones as well as increased infiltration of activated B cells.

- Blocking HEV-mediated entry with a-CD62L Abs reveal a potential role for HEV-mediated entry in vaccine modalities, where mature HEV+iBALTs are formed.

- Suggests that iBALT promoting vaccines can open a backdoor of T cell entry to the lung that potentially could improve intralesiononal positioning.

- Studies are ongoing to address this aspect.
ACKNOWLEDGEMENTS

TB Vaccine Research
Rasmus Mortensen
Joshua Woodworth
Karin Dijkman
Helena Clemmensen
Elisa Catafal Tardos
Amalie Vedsted Jakobsen
Paula Torres
Ming Liu Olsen
Camilla Myhre Maymann
Camilla Rasmussen

Adjuvant Research
Dennis Christensen
Gabriel K. Petersen

Human Immunology
Alvaro Borges
Per Skallerup

TB Vaccine Development
Lars Vibe
Karen Korsholm
Charlotte Jensen
Grith Krøyer Wood

Collaborators/partners
Urdahl Group; Seattle Children’s Research Inst.
Gerner/Gern; U Washington/SCRI
Nemes/Scriba and colleagues; SATVI
Kawashima; Chiba University