Cytomegalovirus Acquisition in Infancy and the Risk of Tuberculosis in Childhood: A Prospective South African Birth Cohort

Leonardo Martinez Boston University School of Public Health Department of Epidemiology

Boston University

Cytomegalovirus acquisition in infancy and the risk of tuberculosis disease in childhood: a longitudinal birth cohort study in Cape Town, South Africa

Leonardo Martinez, Mark P Nicol, Catherine J Wedderburn, Attie Stadler, Maresa Botha, Lesley Workman, David M le Roux, Heather J Zar

oa

Tuberculosis risk is highest among young children

Cytomegalovirus Acquisition in Infancy and the Risk of Tuberculosis in Childhood

Tuberculosis risk is highest among young children

Gupta et al, 2020 Nature Medicine Martinez et al, 2020 The Lancet

Acquisition of viral infections

- Acquisition of viral infections, such as cytomegalovirus, in early life may alter the immune system
- However how this impacts later development of tuberculosis is not well understood

Drakenstein Child Health Study, 2012 – 2021

Pregnant Women 20 – 28 weeks gestation

Infant-birth Baseline Evaluations

Follow-up for disease

Tuberculosis-related Tests:

 Tuberculin skin testing at 6 and 12 months and then annually until 3 years old
Tuberculosis continuously evaluated at regular and sick visits

Research Question

- Is there a relationship between cytomegalovirus infection in infancy and the subsequent development of tuberculosis disease in childhood?
- Is there a dose-response relationship between cytomegalovirus load and tuberculosis disease risk?
- What proportion of tuberculosis in childhood is attributable to cytomegalovirus infection in infancy?

Cytomegalovirus testing

- Cytomegalovirus was assessed in children through cytomegalovirus-specific DNA using nasopharyngeal swabs
- We performed quantitative, multiplex, real-time PCR
- Children had nasopharyngeal swabs taken at birth and then multiple time points throughout the first 2 years of life

Tuberculosis evaluation

- Children were followed up for tuberculosis disease from birth until April 2021
- Sputum smear specimens and induced sputum in duplicate for tuberculosis culture and Xpert MTB/RIF from all children with a TST induration >10 mm, and from children with suspected tuberculosis disease.
- Chest radiographs were taken in all children with suspected tuberculosis.

Cumulative prevalence of CMV reaches $\sim 40\%$ at one year old

Large jump from 6 to 24 weeks

Cytomegalovirus strongly related to breastfeeding

Cytomegalovirus acquisition is a major risk factor for childhood tuberculosis

Cytomegalovirus <1 year old

Tuberculosis incidence >1 year old

Highly significant no matter when CMV occurred

Boston University

Consistent results regardless of timing of CMV

Timing of Cytomegalovirus Positivity	Follow-up for tuberculosis	AHR (95% CI)
6 months and before	>6 months of age	3.1 (1.8-5.5)
12 months and before	>12 months of age	3.2 (1.6–6.4)
24 months and before	>24 months of age	3.0 (1.2-7.2)

Consistent results with additional adjustment

Regression adjustment	Adjusted Hazard Ratio
Base model adjusted for demographic and maternal factors	3.2 (95% CI,1.6–6.4)
Additionally adjusted for tuberculin skin test conversion	3.7 (95% CI, 1.7–8.4)
Additionally adjusted for household TB exposure	3.2 (95% CI, 1.6–6.5)

Dose-response with viral load

Dose-response relationship seen between lower and high CMV viral loads

Children with higher CMV viral loads were at greatest risk

What proportion of tuberculosis in childhood is attributable to cytomegalovirus acquisition in infancy?

Timing of Cytomegalovirus	Follow-up for	PAF
Positivity	tuberculosis	<u>(</u> 95% CI)
6 months and before	>6 months of age	42.2 (21.8–61.0)
o months and before	>0 months of age	42.2 (21.8–01.0)
12 months and before	>12 months of age	47.9 (20.5–69.3)
	0	
24 months and before	>24 months of age	48.3 (8.9–74.4)

Could we prevent tuberculosis through prevention of CMV?

- Not enough empirical evidence
- We need further immunological and epidemiological data
- Multiple phase 3 trials on prevention of CMV ongoing

Conclusions

- Cytomegalovirus may be an important driver of high tuberculosis risk in young children
- Deterring or delaying acquisition of cytomegalovirus perinatally or in the first months of life may be necessary to control pediatric tuberculosis

Funding Support:

- Bill and Melinda Gates Foundation # OPP 1017641
- Medical Research Council South Africa

Thank you for listening

Leonardo Martinez LeoMarti@bu.edu

Boston University