

Insights from a TB (BCG) controlled human infection model

Helen McShane The Jenner Institute University of Oxford

Why do we need a human mycobacterial challenge model?

- To provide a biological signal of efficacy with new vaccines
- To identify potential immune correlates of protection
- As a model of the immunobiology of disease

Developing a mycobacterial controlled human infection model

- Challenge agent
 - BCG
 - Attenuated *M.tb*

- Challenge route
 - Skin
 - Lung

- Endpoints
 - Mycobacterial quantification
 - CFU/PCR
 - Safety
 - Immunogenicity

Using a CHIM to provide a biological signal of efficacy with candidate vaccines

- Key to use of a CHIM by vaccine developers is confidence that the model is measuring something that is biologically meaningful = *validation*
 - A CHIM can de-risk vaccine development
- Ultimate 'validation' of a CHIM is comparison of candidate vaccine 'efficacy' in a CHIM vs efficacy in a field efficacy study
- In the absence of field efficacy data, we can 'validate' a CHIM model against a known vaccine effect

BCG vaccination protects against intradermal BCG challenge in humans

And MVA85A does not protect against a BCG skin challenge...

Aerosol BCG CHIM studies

BCG naïve volunteers

• TB041

- Dose escalation $10^4 10^7$ cfu aerosol BCG
- Bronchoscopy @ D14
- Blood taken at multiple time points
- ID BCG control group
- Satti et al, Lancet Infectious Diseases 2024

BCG vaccinated volunteers

• TB044

- Dose escalation $10^4 10^7$ cfu aerosol BCG
- Bronchoscopy @ D14
- Blood taken at multiple time points
- Fredsgaard-Jones, Harris et al, submitted

- TB043
 - 10⁷cfu inhaled BCG, inhaled saline control group
 - Bronchoscopy @ D2,7,14,28,56
 - Blood taken at multiple time points
 - Marshall, Satti et al, submitted

- TB045
 - Evaluation of prior BCG and IDRI93/GLA-SE vaccination
 - Aerosol BCG challenge and bronchoscopy @ 2 weeks
 - Immune correlate evaluation

Detection of BCG in the BAL

• Using whole BAL sample for BCG detection

• Splitting BAL sample for BCG detection and flow cytometry

BCG recovery from BAL 2 weeks post aerosol BCG

BCG naïve subjects

Dose of inhaled BCG (CFU)	Number of volunteers	Number of BCG+ BAL samples
1×10^4	3	2
1 x 10 ⁵	3	3
1 x 10 ⁶	3	3
1 x 10 ^{7*}	12	5

* For the 1 x 10⁷ dose, only BAL supernatant was put into the MGIT system

BCG vaccinated	Dose of inhaled BCG (CFU)	Number of volunteers	Number of BCG+ BAL samples
subjects	1 x 10 ⁴	3	0
	1 x 10 ⁵	3	0
	1 x 10 ⁶	3	0
	1 x 10 ⁷	3	0

TB045: Evaluating BCG and IDRI93/GLA-SE in an aerosol BCG CHIM

Group A and C: Volunteers will receive two doses of ID93/GLA-SE 2 months apart, and then 2 months later receive a "challenge" of aerosol BCG and 14 days later undergo a bronchoscopy

Group B and D: Volunteers will not be vaccinated but will receive a "challenge" of aerosol BCG and 14 days later undergo a bronchoscopy

Group	Volunteers	Vaccination Status	and Schedule	Screening Day 0 ID93/GL/ Vaccinat
Α	12	BCG-Vaccinated	2 μg ID93 + 5 μg GLA-SE	
			at Day 0 and Day 56	Group B and D: V
В	12	BCG-Vaccinated	None	undergo a bronch
С	12	BCG-Naïve	2 μg ID93 + 5 μg GLA-SE	
			at Day 0 and Day 56	
D	12	BCG-Naïve	None	

Historic BCG

Number of

PPD-specific ELISPOT responses after aerosol or ID BCG

Satti et al, Lancet Infectious Diseases 2024

Days

PPD-specific CD4+ and CD8+ T cells in the BAL 2 weeks postaerosol BCG

Satti et al, Lancet Infectious Diseases 2024

An exploratory study of human immune responses to aerosol BCG challenge

Healthy UK BCG naïve and historically BCG-vaccinated adults 10⁷CFU BCG Danish by aerosol

BAL and PBMC analysis:

- Single cell RNA sequencing (scRNA-seq)
- Single cell ATAC sequencing (scATAC-seq)
- Bulk TCR sequencing (TCR-seq)

Group	BCG vaccination	Description	Challenge agent	200
1	Naive	Bronchoscopy D2	10 BCG and 3 saline per group	BCG-na
2		Bronchoscopy D7		
3		Bronchoscopy D14		
4		Bronchoscopy D28		Historic: BCG-vaccii
5		Bronchoscopy D56		
8	BCG-vaccinated	Bronchoscopy D14	9 BCG	(N

Shuailin Li et al, unpublished

Created using biorender.com

Summary

- A TB CHIM model could facilitate and de-risk early vaccine R&D
- A protective effect of BCG vaccination in a skin and aerosol BCG CHIM has been demonstrated
- Every opportunity should be sought to *validate* a CHIM
 - M72?
- Novel insights into the immunobiology of mycobacterial infection can be identified using an aerosol BCG CHIM

Acknowledgements

Oxford Centre for Respiratory Medicine

- Henry Bettinson
- Tim Hinks

Birmingham WT CRF

- Professor Paul Moss
- Catharine Stead
- Anna Finnegan

Shuailin Li Iman Satti **Stephanie Harris** Julia Marshall **Rachel Tanner** Hazel Morrison Timothy Fredsgaard-Jones Suzy Jackson **Rachel Wittenberg** Ian Poulton Raquel Ramon-Lopez Alison Lawrie

BILL & MELINDA GATES foundation Lynda Stewart Anne Kasmar Willem Hanekom

wellcometrust

Study participants

PHOENIX / IMPAC-TB TEAM

- Rhea Coler
- Sasha Akins
- Alison Wald

