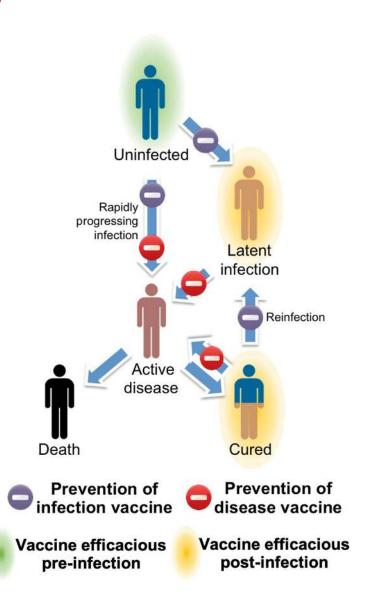
Subclinical TB: implications for TB vaccine trial designs and development

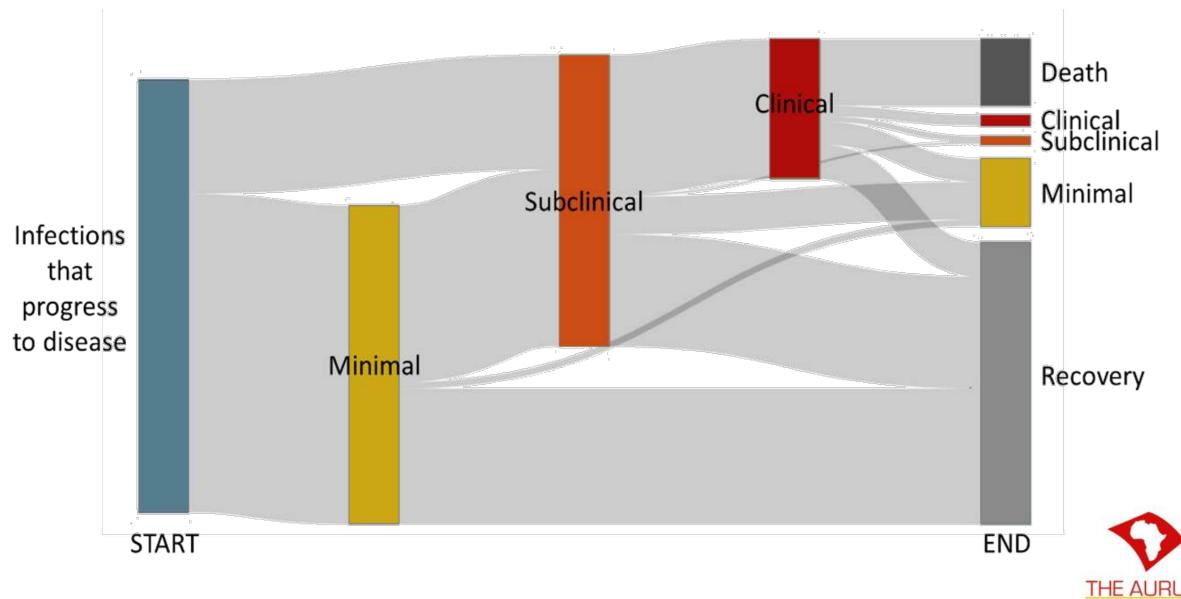
Plenary 3. Advancing TB vaccine clinical development Global TB vaccine Forum Rio de Janeiro


9th October 2024

Gavin Churchyard

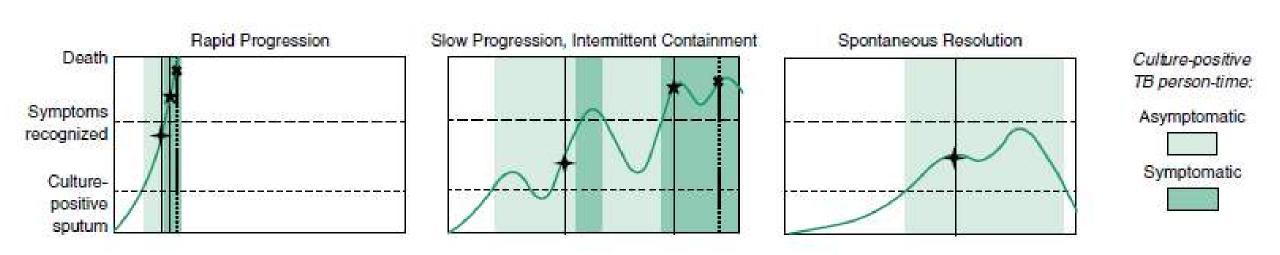
Overview

- Background
- Subclinical TB
 - Clinical characteristics
 - Implications of infectious scTB for POD TB vaccine trials
 - Trial design options
- Evolving landscape
- Conclusion


Background

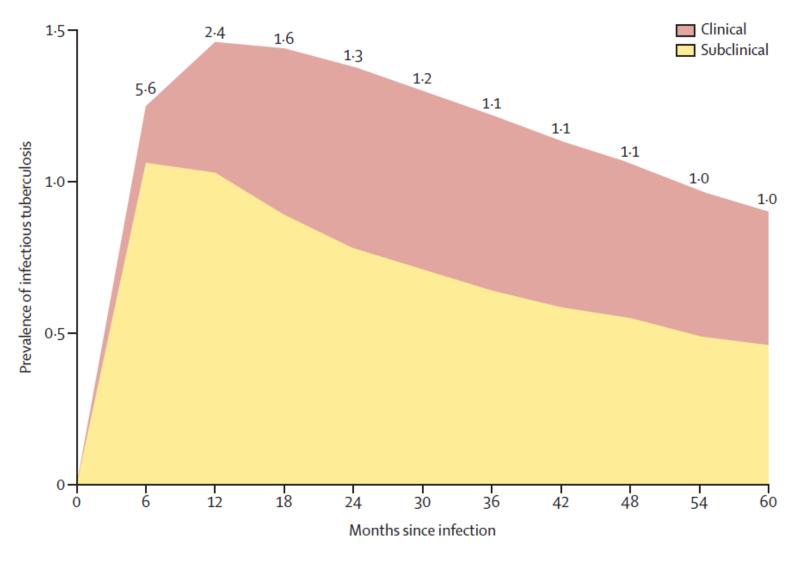
Background

- Definition: un-infectious or infectious, but are without, not aware, or not reporting symptoms/signs related to TB
- scTB accounts for half of prevalent TB globally
- Data on transmissibility of scTB and its post-TB sequelae are limited
- The WHO Preferred Product Characteristics for POD TB vaccines do not consider the implications of subclinical TB
- The TB vaccine Roadmap identifies subclinical TB as a research gap
- Regulators typically require efficacy endpoints to be specific, it is therefore likely that only microbiologically confirmed scTB would be counted as an efficacy endpoint


Pathways over 10 years following Mtb infection

Horton KC. Proc Natl Acad Sci USA. 2023

INSTITUTE


Natural history

Kendall. Am J Respir Crit Care Med, 2021

Ratio of scTB vs cTB after infection

Horton KC. Proc Natl Acad Sci USA. 2023

scTB & POD TB vaccines

 Screening for TB in TB preventive treatment trials and treatment of disease trials detected a sizable burden of scTB

Clinical characteristics

Clinical characteristics

Scoping review of scTB (1)

- Not well described
- Less extensive disease
- Higher treatment success
- Lower mortality

Comparison of chest computed tomography findings of active and subclinical tuberculosis diseases (2)

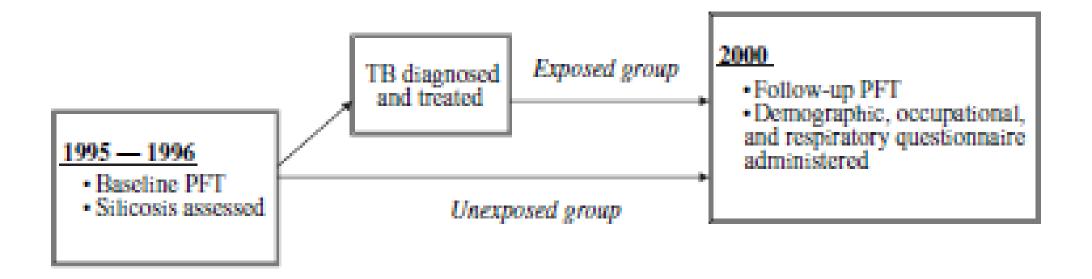
Radiographic findings	All patients (n = 412)	Active TB disease ($n = 331$)	Subclinical TB disease (n = 81)
Multiple lobe involvement	168 (36.1-45.6%)	144 (38.3-48.9%)	24 (20.8-40.3%)
Tree-in-bud sign	247 (55.1-64.6%)	191 (52.3-62.9%)	56 (58.4-78.1%)
Cavitation	165 (35.4-44.9%)	129 (33.9-44.3%)	36 (34.1-55.3%)
Consolidation 242 (53.9-63.4%)		204 (56.3-66.7%)	38 (36.4-57.7%)
Fibrotic scar 73 (14.3-21.7%)		65 (15.7-24.3%)	8 (5.1-18.3%)
Atelectasis 71 (13.9–21.2%)		62 (14.9-23.3%)	9 (6.0-19.8%)
Emphysema 58 (11.1–17.8%)		45 (10.3-17.7%)	13 (9.6-25.5%)
Bronchiectasis	82 (16.3-24.0%)	67 (16.3-24.9%)	15 (11.628.3%)

1. Teo. Eur Respir Rev. 2024; 2. Min et al. BMC Pulm Med (2020) 20:316

Progression from bacteriology negative to positive TB disease

	Patients who progressed (n)	Cohort size (n)	Follow-up (months)	Annualised rate (95% CI)
Active				
Frimodt-Moller et al (1965) ³³	25	86	36 —	0.10 (0.04-0.17)
Okada et al (2012) ⁵²	51	309	24 🗕	0.09 (0.06-0.12)
Cowie et al (1985) ³¹	88	152	58 —	0.16 (0.11-0.22)
Nørregaard et al (1990) ⁵¹	8	28	48	0.07 (0.00-0.17)
Borgen et al (1950, 1951) ^{28,29}	2	24	30	0.04 (0.00-0.12)
Aneja et al (1979) ²⁴	21	110	12 —	0.19 (0.12-0.26)
National Tuberculosis Institute (1974, 1976, 1978, 1982) ⁴²⁻⁵⁰	36	271	60 🖶	0.03 (0.01-0.05)
Beeuwkes et al (1942) ²⁵	13	43	33 —	0.12 (0.02-0.21)
Hong Kong Chest Service (1979, 1981, 1984) ³⁴⁻³⁷	71	176	60	0.10 (0.05-0.14)
Random-effects model				0.10 (0.06-0.13)
Heterogeneity: Q=40·8, df=8 (p<0·0001); <i>l</i> ²=77·4%, τ²=0·0020				

Among persons with CXR evidence of TB, negative microbiology, untreated, and with, without or unknown symptoms suggestive of TB, 10%/year progressed to bact+ve TB

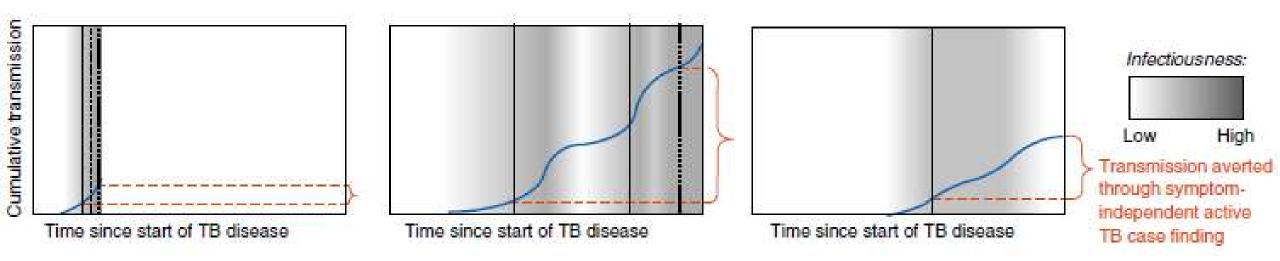

In 3 studies that included people with non-infectious subclinical TB, the rates of progression to bacteriologically positive TB were similar (range 4-12% per year).

Treatment prevents progression

Multidrug treatment of patients with radiological TB and negative sputum cultures prevents progression to culture positive TB

Study	Intervention	CF*	Control n/N	Intervention n/N		Risk Ratio [95% CI]
Multi-drug regi	mens					
Cowie, 1985	3HRZE	ACF	88/152	30/250	⊢∎⊣	0.21 [0.14, 0.30]
HKCS, 1984	2SHRZ	PCF	71/173	10/161	→	0.15 [0.08, 0.30]
HKCS, 1984	3SHRZ	PCF	71/173	5/161	⊢ −•−−+	0.08 [0.03, 0.19]
HKCS, 1984	3SPH/9SH	PCF	71/173	1/160	4•	0.02 [0.00, 0.11]
Norregaard, 1990	3HRE/6HE	PCF	8/28	0/22	•	H 0.07 [0.00, 1.23]
RE Model for Subgrou	up, (p = 0.04; l ² = 65.9	%, $\tau^2 = 0.35$)			-	0.11 [0.05, 0.23]
			(Gray. PLOS	One, 2023)		1

Post TB lung function impairment



Lung function impairment was less in miners with TB: detected by CXR screening, less extensive disease, and smear negative

(Ross J. Thorax. 2010)

scTB and transmission

scTB may contribute substantially to transmission on a population level because of its high prevalence and long duration

Kendall. Am J Respir Crit Care Med, 2021

TB vaccine POD trial design options for evaluating efficacy in preventing infectious scTB & cTB

Design 1	Design 2	Design 3	Design 4
Symptom TB	Symptom-	Symptom-independent	Realtime symptom-
screen	independent TB	TB screen during & end	independent TB
	screen at end of	of follow up. Testing	investigations during
	study follow up	differed to end of study	and at end of follow up
Endpoint	Endpoint	Endpoint	Endpoint
1º: cTB	1º: cTB	1°: cTB	1º: Composite
			scTB & cTB
	2°: scTB-end of	2°: scTB during & end of	
	follow-up	follow-up	

In all designs, TB is excluded prior to enrolment using a symptom screen and sputum for Xpert

Design 1 Symptom TB screen	Design 2 Symptom- independent TB screen at end of study follow up	Design 3 Symptom-independent TB screen during & end of follow up. Testing differed to end of study	Design 4 Realtime symptom- independent TB investigations during and at end of follow up
Endpoint 1º: cTB	Endpoint 1º: cTB	Endpoint 1º: cTB	Endpoint 1º: Composite scTB & cTB
	2°: scTB-end of follow-up	2°: scTB during & end of follow-up	

In all designs, TB is excluded prior to enrolment using a symptom screen and sputum for Xpert

Design 1 Symptom TB screen

> Endpoint 1º: cTB

Design 2 Symptomindependent TB screen at end of study follow up

> Endpoint 1º: cTB

2º: scTB-end of follow-up

Design 3

Symptom-independent TB screen during & end of follow up. Testing differed to end of study

> Endpoint 1º: cTB

2°: scTB during & end of follow-up

Design 4 Realtime symptomindependent TB investigations during and at end of follow up

> Endpoint 1º: Composite scTB & cTB

> > INSTITUTE

Special considerations: CXR screening

- Including a chest radiograph at study entry and or follow up for Designs 2–4 might yield important information to understand the effects of the vaccine on non-infectious scTB
- However, implications for inclusion criteria and treatment would need to be addressed
- Possible options for including chest radiography at study entry and follow up include
 - Do not look, therefore can't treat
 - Look and do not treat
 - Look and treat

Design 4a

<u>Baseline:</u> symptoms + sputum for Xpert <u>Follow up:</u> realtime symptom-independent TB investigations (sputum for Xpert/culture)

> Endpoint Composite scTB & cTB

<u>Baseline:</u> symptoms, *CXR*, & sputum for Xpert <u>Follow up:</u> Realtime symptom-independent TB investigations (*CXR*), If new CXR abnormality, Ix for TB

Design 4b

Endpoint Composite *CXR*+/bact+ Symptom+/bac+

Design 4a

<u>Baseline:</u> symptoms + sputum for Xpert <u>Follow up:</u> realtime symptom-independent TB investigations (sputum for Xpert/culture)

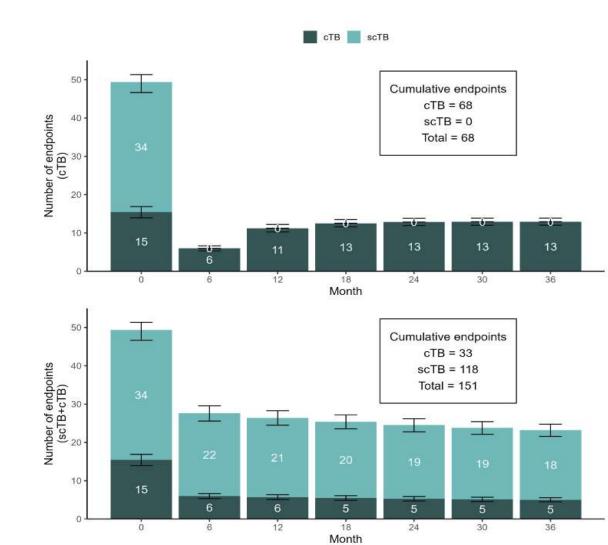
> Endpoint Composite scTB & cTB

Design 4b <u>Baseline:</u> symptoms, *CXR*, & sputum for Xpert <u>Follow up:</u> Realtime symptom-independent TB investigations (*CXR*), If new CXR abnormality, Ix for TB

> Endpoint Composite *CXR*+/bact+ Symptom+/bac+

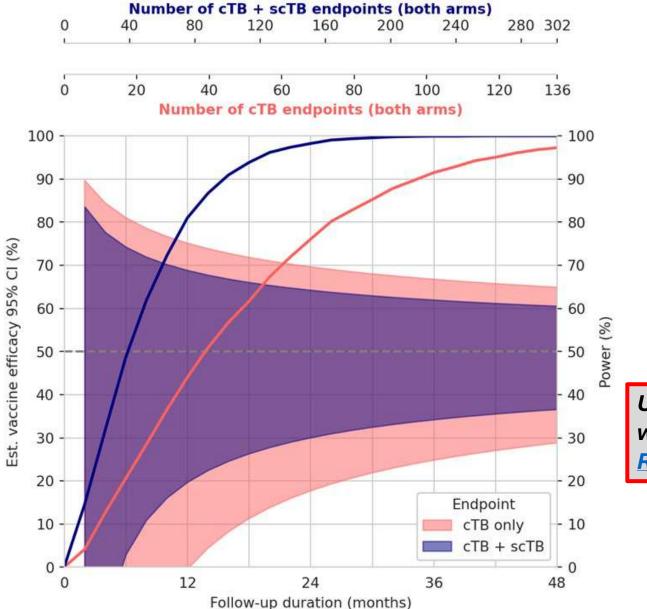
Risk of Design 4a & 4b is that if a vaccine has differential efficacy, a vaccine efficacious in preventing cTB may be rejected

Regulatory & ethical considerations


- Regulators recognise cTB as the primary endpoint as it is well characterised, is associated with morbidity, mortality & transmission
- Symptom screening only during follow up accepted by regulators & ethics committees
 - scTB not detected & treated
- Screening for scTB at end of follow up acceptable to regulators and ethics committees
- Collection & storage of sputum for culture and Xpert during follow up may be acceptable to regulators & ethics committees
- Collection & real-time processing of sputum for culture and Xpert during follow up will be acceptable to ethics committees, but regulators may not accept scTB being included in a composite endpoint without further evidence
 - Treating scTB would prevent possible progression to cTB

scTB: implications for TB vaccine trials

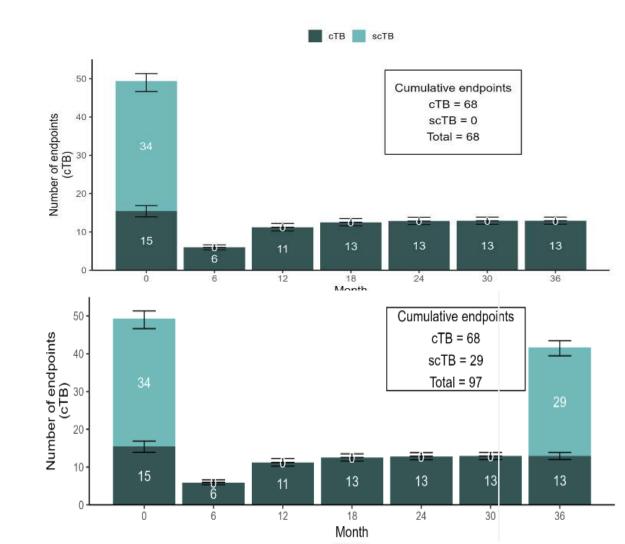
Estimated number of scTB & cTB endpoints, in the control arm of a POD TB vaccine trial


Symptom screen 6 monthly, and investigated for TB if positive. Only cTB detected

Symptom screen & sputum for culture / Xpert 6 monthly. Both scTB and cTB detected and treated

Unpublished, please do not cite/use without contacting <u>Richard.white@lshtm.ac.uk</u>

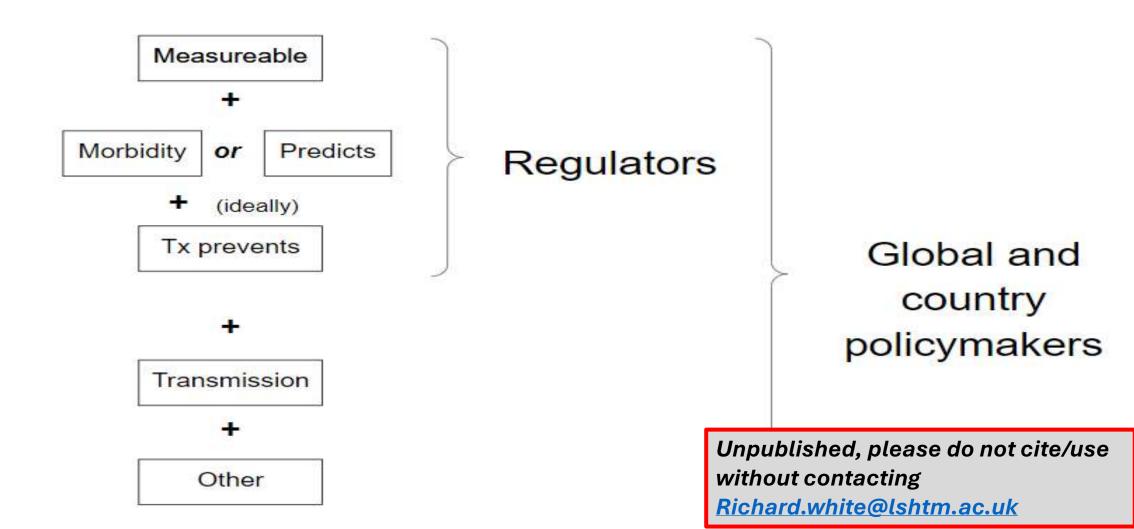
Time to accrual



Assumes 50% efficacy against scTB & cTB

Unpublished, please do not cite/use without contacting <u>Richard.white@lshtm.ac.uk</u>

Estimated number of scTB & cTB endpoints, in the control arm of a POD TB vaccine trial


Symptom screen 6 monthly, and investigated for TB if positive. Only cTB detected

Only collecting sputum for culture/Xpert at last study visit would detect 1.4 X more endpoints than scenario 1

Unpublished, please do not cite/use without contacting <u>Richard.white@lshtm.ac.uk</u>

What evidence is required to include scTB as a co-primary endpoint?

What evidence is required to include scTB as a co-primary endpoint?

Design	Morbidity	Predicts progression	Does Rx prevent cTB	Transmission
Systematic reviews and meta-analyses	Х	Х	Х	Х
Retrospective secondary analysis of existing data	Х	Х	Х	
Cross-sectionally in a symptom-agnostic community- based screening	Х			
Prospective cohort	Х	X	Х	
Natural history studies	Х	$\mathbf{\vee}$		
Cluster randomised trial of Rx or no Rx of scTB		Х	Х	
Symptom vs. symptom-agnostic ACF randomised trial	Unpublished, please do not cite/use without contacting <u>Richard.white@lshtm.ac.uk</u>			Х

Evolving landscape

- WHO recommends CXR screening and use of CAD in high burden settings
- WHO convening meetings (October 14-18) on scTB and TB screening to agree on definition of scTB, inform policy and set research priorities
- Global fund signalled intent to invest in scaling up CAD for TB diagnosis
- Adoption and implementation of active TB case finding in high burden countries is unknown, but likely to be heterogeneous & increasing

Conclusion

- scTB accounts for half of prevalent TB and likely to be an important driver of transmission and result in morbidity
- If scTB is associated with morbidity and transmission, it is important to know whether TB vaccines are effective in preventing clinical and subclinical TB
- Various clinical trial design options would allow the efficacy of TB vaccines in preventing clinical and subclinical TB to be determined
- Evidence needed to support including scTB as part of a composite primary endpoint
- Policy and practice with respect to screening for and treating scTB is rapidly evolving

Acknowledgements

- Richard White
- Rein Houben
- Andrew Fiore-Gartland
- Katherine Horton
- Hanif Esmail
- Katherine Fielding
- Alison Grant
- Molebogeng Rangaka
- Marcel Behr
- Alberto Garcia-Basteiro

- Emily Wong
- Mark Hatherill
- Vidya Mave
- Alemnew Dagnew
- Alexander Schmidt
- Ann Ginsburg
- Puneet Dewan
- Kristin Croucher
- Frank Cobelens

- Willem Hanekom
- Philip Hill
- Lewis Schrager
- Rebecca Clark
- Margaret Stanley
- Helen Rees
- Puck Pelzer
- Joel Ernst

- Johan Vekemans
- Mike Frick
- Tom Evans
- Sujatha Nambiar