Diversifying the TB Vaccine pipeline

8-10 October 2024 Rio de Janeiro, Brazil

Driving innovation from discovery to access

From discovery to access

HEALTH

IMPACT

Discovery Preclinical Clinical; FIH, Phase2, 3 Registration

Vaccine implementation pathway

- Demand
- Commercial attractiveness
- Delivery requirements
- Donor funding
- Legal framework for global access
- National policy development pathway

Global policy development pathway

- Local access (logistics, cold chain)
- Vaccine acceptance

Currently in the clinical pipeline

Last update: 2 September 2024

Driving innovation from discovery to access

TB Vaccine Pipeline

Vaccine candidates under clinical development

There are 15 vaccine candidates in the pipeline as of September 2024, of which 12 are in active trials. The candidates are placed under the phase which corresponds to

the most advanced ongoing or completed trial. Platform Trial staus Mycobacterial - Live attenuated Active trials Mycobacterial - Inactivated No active trials Viral vector Protein/Adjuvant Candidate target population Primary candidate indication Elderly POI Prevention of Infection Adults POD Prevention of Disease Adolescents POR Prevention of Recurrence Children Thp Therapeutic J, Infants People living with HIV -Mtb People without Mtb infection +Mtb People with Mtb infection aTBd People with active TB disease

People with MDR-TB

Stop (B) Partnership

WORKING GROUP ON

NEW TB VACCINES

People cured of active TB

MDR

Information reported by vaccine sponsors or found in clinical trial registries or other public sources Institutions listed are vaccine sponsors and development partners

Additional information, including the full list of clinical trials for each candidate, can be accessed via the QR code or at newtovaccines.org/tb-vaccine-pipeline/

Diversifying the pipeline; why?

Preferred Product Characteristics

Prevention of TB disease

Neonates and infants
> 80% efficacy vs baseline / better than BCG
>10 years protection after primary immunization

Prevention of active pulmonary TB disease
Adults and adolescents

- > 50% efficacy preventing confirmed pulmonary TB
- >10 years protection after primary immunization

Safety and reactogenicity profile favourable

Minimal number of doses

No interference with other vaccines recommended for same target population Meets WHO criteria for vaccine presentation, packaging, thermostability, formulation and disposal Cost of goods should not be a barrier to access in LMICs

Diversifying the pipeline; why?

Preferred Product Characteristics

Prevention of TB disease Neonates and infants

Cold chain independent Prevention of active pulmonary TB disease Adults and adolescents

> 80% efficacy vs baseline / better than

Reducing cost

izati

> 50% efficacy prevo Improving med

>10 years protection

vaccine

efficacy

Infection, Disease,

Preventing

Recurrence

latio.

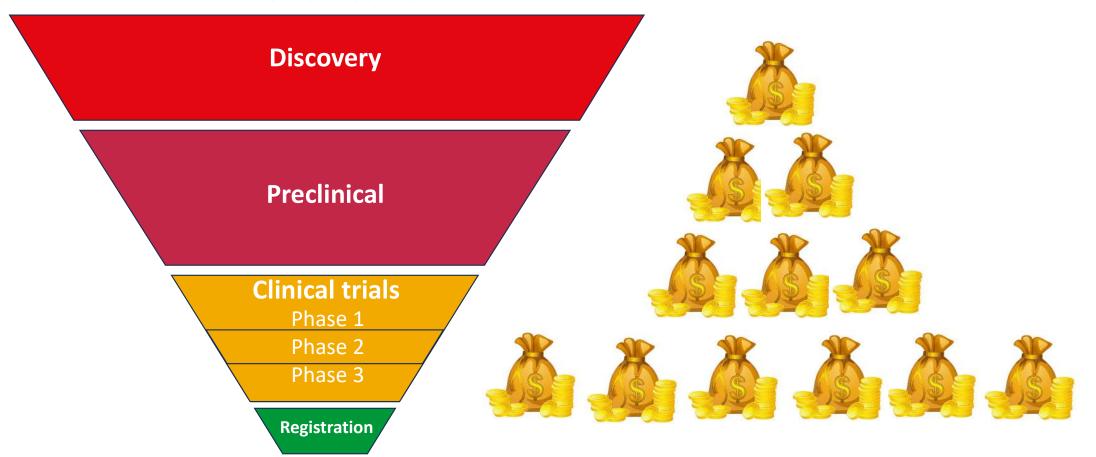
on and disposal

Improve longevity of protection

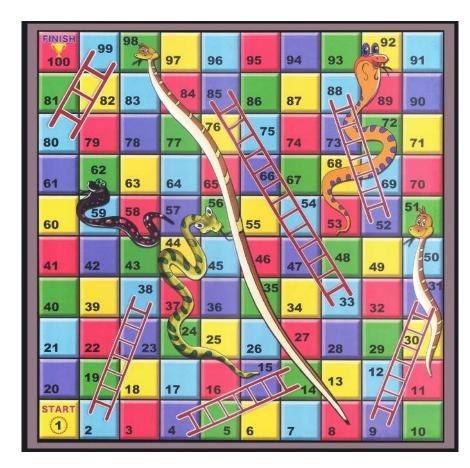
No interfere **Addressing target** groups; safety and

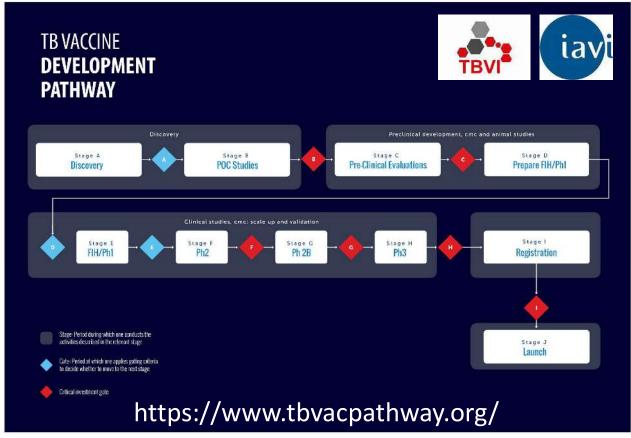
immunogenicity

>10 years protection afte

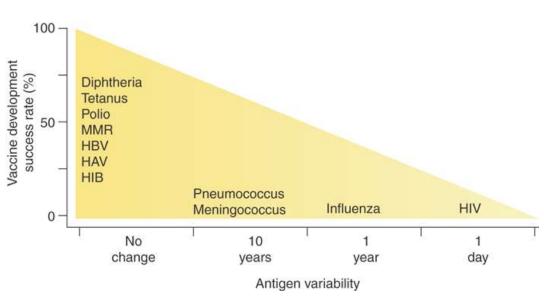


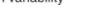
Derisking vaccine development; fast fail


Diverisification

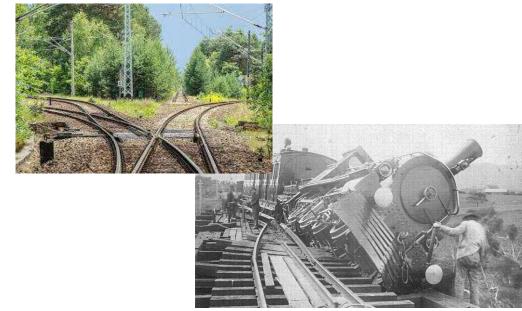


Derisking vaccine development; asking the right questions





Not all vaccines work equally well



Pathogen-survival-kit: disguise, hide-and-seek, sabotage,...

From: Rappuoli, Nature Biotechn. 25:1361, dec 2007

Vaccine design and evaluation

Discovery

Preclinical

CHIM

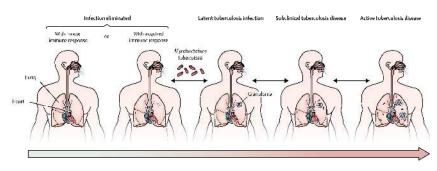
Vaccine Efficacy

TB vaccine design

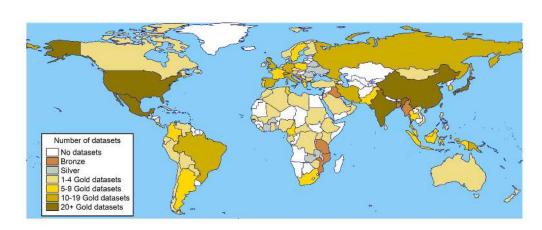
Antigens
Adjuvants
Administration routes
Platforms

TB vaccine evaluation

TB vaccine design: Antigens



Culture filtrate; secreted proteins
Serological screening
Genome wide in silico approach
T-cell expression cloning / single cell T cell receptor sequencing
Immunopeptidomics


Stages of TB;

Active disease antigens
Latency antigens
Resuscitation-promoting factors

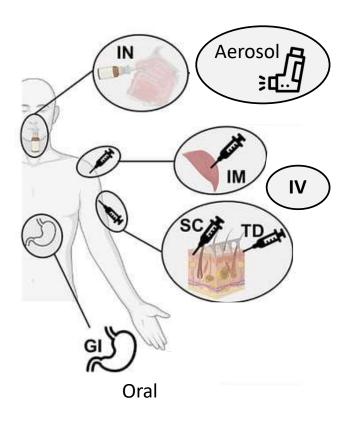
DOI: 10.1016/S0140-6736(19)30308-3

Populations

https://allelefrequencies.net/

Adjuvants and administration routes

Adjuvants - enhancing vaccine efficacy


Activation of innate immunity:

- Danger signal
- Direct ligand for pathogen recognition receptor
- Depot (enhanced retention & sustained release)

Leading to:

- Immune targeting (Lymph node, DC activation)
- Immune polarization (T helper cell, antibodies)
- Sustained adaptive immune memory

Administration routes

DOI: 10.1016/j.immuni.2024.03.015

Modified from: https://www.mdpi.com/1999-4923/13/12/2091

Platforms

Type of vaccine	Licensed vaccines using this technology	First introduced
Live attenuated (weakened or inactivated)	Measles, mumps, rubella, yellow fever, influenza, oral polio, typhoid, Japanese encephalitis, rotavirus, BCG, varicella zoster	1798 (smallpox)
Killed whole organism	Whole-cell pertussis, polio, influenza, Japanese encephalitis, hepatitis A, rabies	1896 (typhoid)

From: Pollard, A.J., Bijker, E.M. *Nat Rev Immunol* **21**, 83–100 **(2021)**. https://doi.org/10.1038/s41577-020-00479-7

Toxoid	☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆	Diphtheria, tetanus	1923 (diphtheria)
Subunit (purified protein, recombinant protein, polysaccharide, peptide)	وافراه	Pertussis, influenza, hepatitis B, meningococcal, pneumococcal, typhoid, hepatitis A	1970 (anthrax)
Virus-like particle	*	Human papillomavirus	1986 (hepatitis B)
Outer Pathoger membrane antigen vesicle	Gram-negative bacterial outer membrane	Group B meningococcal	1987 (group B meningococcal)
Protein-polysaccharide conjugate	Polysaccharide Carrier protein	Haemophilus influenzae type B, pneumococcal, meningococcal, typhoid	1987 (H. influenzae type b)
Viral vectored		Ebola SARS-CoV-2	2019 (Ebola)
Nucleic acid vaccine	DNARNALipid coat	SARS-CoV-2	2020 (SARS-CoV-2)
Bacterial vectored Pathoge gene	Bacterial vector	Experimental	÷
Antigen- presenting cell	Pathogen antigen MHC	Experimental	-

Currently in the clinical pipeline 7

TB Vaccine Pipeline

Vaccine candidates under clinical development

There are 15 vaccine candidates in the pipeline as of September 2024, of which 12 are in active trials. The candidates are placed under the phase which corresponds to

the most advanced ongoing or completed trial. Platform Trial staus Mycobacterial - Live attenuated Active trials Mycobacterial - Inactivated No active trials Viral vector Protein/Adjuvant Candidate target population Primary candidate indication Elderly POI Prevention of Infection Adults POD Prevention of Disease Adolescents POR Prevention of Recurrence Children Thp Therapeutic J, Infants People living with HIV -Mtb People without Mtb infection +Mtb People with Mtb infection

aTBd

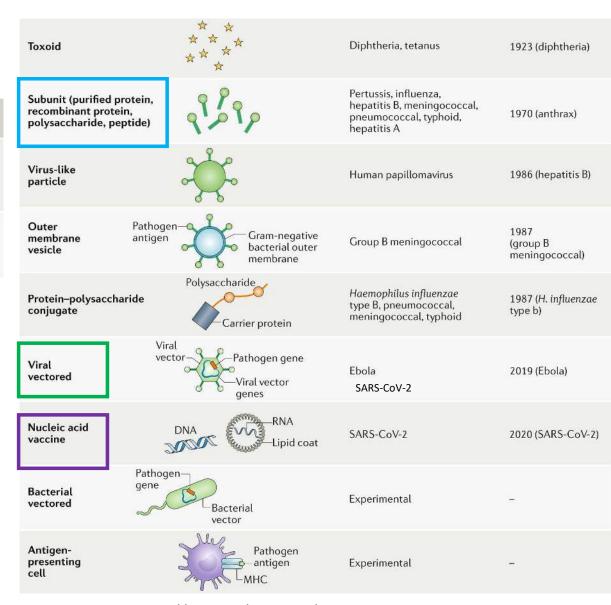
MDR

NEW TB VACCINES

Information reported by vaccine sponsors or found in clinical trial registries or other public sources

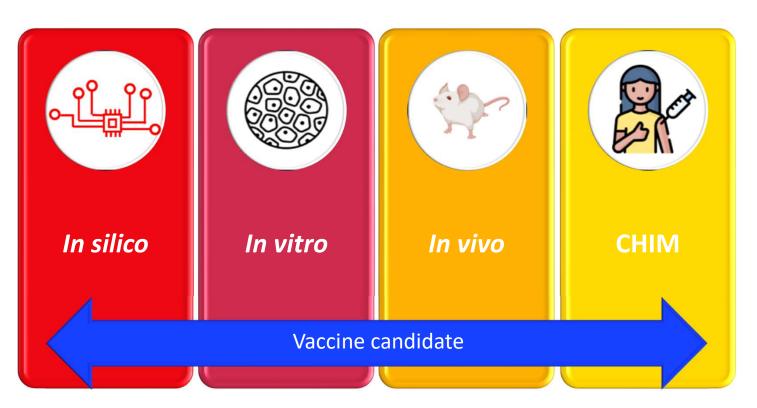
Institutions listed are vaccine sponsors and development partners

Additional information, including the full list of clinical trials for each candidate, can be accessed via the QR code or at newtovaccines.org/tb-vaccine-pipeline/


Last update: 2 September 2024

Platforms

Type of vaccine	Licensed vaccines using this technology	First introduced
Live attenuated (weakened or inactivated)	Measles, mumps, rubella, yellow fever, influenza, oral polio, typhoid, Japaness encephalitis, rotavirus, BCG, varicella zoster	1798 (smallpox)
Killed whole organism	Whole-cell pertussis, polio, influenza, Japanese encephalitis, hepatitis A, rabies	1896 (typhoid)


Platform				
	Mycobacterial - Live attenuated			
	Mycobacterial - Inactivated			
	Viral vector			
	Protein/Adjuvant			
	RNA			

From: Pollard, A.J., Bijker, E.M. Nat Rev Immunol 21, 83-100 (2021). https://doi.org/10.1038/s41577-020-00479-7

Vaccine evaluation

Immunological read out Innate & adaptive immunity

Several images from flaticon.com

CORRELATES that predict Vaccine Efficacy in the target population

Current diversification of the pipeline

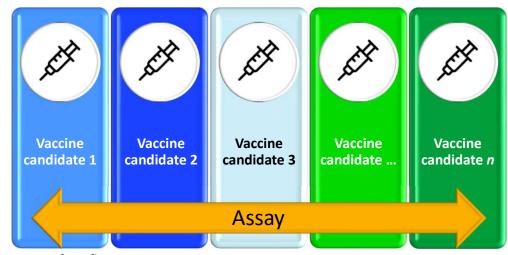
Panel discussions (Wednesday 17:00)

PD1: Defining correlates of protection PD2: feeding the pipeline: New vaccines and platforms

Presentations in plenary 5 (Thursday 9:00)

Innovative approaches to TB vaccine development

Oral abstract session 3 (Thursday 11:30)


Improved formulation and delivery platforms, preclinical research

Moving towards the future

https://newtbvaccines.org/tb-vaccine-pipeline-form/

Images from flaticon.com

Head-to-head testing

Feedback

Let's take the next steps!

