
Accelerating TB vaccine development by "planning for success": The MTBVAC phase 2b clinical trial to prevent TB in African adolescents and adults

Lewis K. Schrager¹, Sujatha Nambiar¹, Marisa Russell¹, Elana van Brakel¹, Arrie Van der Merwe¹, Octavia Magopane¹, Puck Pelzer¹, Marion Gruber¹, Devin Hunt¹, Jelle Thole², Ingrid Murillo², Carlos Martin³

Background

Accelerating the development of TB vaccines represents an important WHO goal. Opportunities may exist within the traditional vaccine development pathway to realize a goal of accelerating the path leading to regulatory assessment for marketing approval. In this discussion we use the development of MTBVAC, a live, rationally attenuated vaccine derived from a virulent clinical isolate of Mycobacterium tuberculosis (Mtb), as a case study in creating the potential for accelerating TB vaccine development. A phase 2b (ph2b) trial of MTBVAC's ability to prevent TB in IGRA+, HIV-persons in South Africa, Kenya and Tanzania is being planned (NCT06272812). This presentation will discuss strategies by which a ph2b trial such as this can be reimagined to "plan for success" and accelerate TB vaccine development, potentially saving resources, time, and lives.

MTBVAC schematic

IMAGINE Investigator Meeting, Cape Town

IM/GINE

Investigation of MTBVAC towards Accelerating Global Immunization for a Neglected Epidemic

Acknowledgements

Funding: Bill and Melinda Gates Foundation, Open Philanthropy, German Federal Ministry of Education and Research (BMBF) and German Development Bank (KFW), European & Developing Countries Clinical Trials Partnership (EDCTP), Congressionally Directed Medical Research Programs (CDMRP), National Institutes of Health (NIH) of US Government, TuBerculosis Vaccine Initiative (TBVI)

Discussion

MTBVAC represents the only live, attenuated candidate in the TB vaccine pipeline directly derived from a clinical Mtb isolate. MTBVAC is being developed along two clinical pathways: preventing TB disease in infants, and in adolescents and adults (A/A). The initial ph1 trials involving adults were conducted in 2013 and 2015 (NCT02013245, NCT02729571). These were followed by a ph1b/2a safety, immunogenicity, and dose-finding trial in 144 IGRA+ and IGRA-, HIV- persons ages 18-60 (NCT02933281). A ph2a trial evaluating the safety and immunogenicity of MTBVAC in A/A living with and without HIV in South Africa is ongoing (NCT05947890).

A ph2b trial of MTBVAC to prevent TB in 4,300 IGRA+, HIV- A/A ages 14-45 in TB endemic regions of sub-Saharan Africa is scheduled to begin in Q3 2024 (the IMAGINE trial; NCT06272812). The assumptions used in calculating the sample size included a LL 95% Cl of ≥0 % with a point estimate of vaccine efficacy varying between 60-70 %; the final analysis will be triggered when 35 pulmonary TB cases have occurred. As designed, the IMAGINE trial will provide data in 2029 to permit a go-no go decision for a phase 3 registration trial. Because this trial will be using the same, commercially-ready product as that being used in a phase 3 trial in infants (NCT04975178), we have opportunity to submit phase 2b data for registration consideration should these data warrant such a submission. This opportunity requires discussions with relevant regulatory authorities to establish acceptable statistical targets for efficacy and meeting requirements for establishing safety. Including populations needed to ensure access to a licensed product — in this case, IGRA-negatives – is also important. Risking additional investments in this trial, such as in support of an IGRA-negative cohort, may permit data submission for licensure at study conclusion in 2029, if supported by sufficiently robust efficacy data.

Conclusion

While an acceleration strategy incurs risk of additional investment, the approach, if successful, could reduce the development of a TB vaccine such as MTBVAC by 7 or more years, potentially saving hundreds of millions of dollars in development costs and thousands of lives. This approach may serve as a model by which the development of future TB vaccines may be accelerated.

¹IAVI, New York, NY, USA and Cape Town, South Africa

²Biofabri, S.L.U, Porriño (Pontevedra), Spain

³Department of Microbiology Pediatrics, Radiology and Public Health, Faculty of Medicine, University of Zaragoza, CIBERES, Instituto Salud Carlos III, Madrid, Spain