

A self-assembling and self-adjuvanting multiepitope peptide nanoparticle vaccine improves the efficacy and immunogenicity of Bacille Calmette-Guérin

Guangzu Zhao¹

¹ Zhao, James Cook University, Cairns, Queensland, Australia

Introduction: After over a century since its initial development, Bacille Calmette-Guérin (BCG) remains the only licensed vaccine against tuberculosis (TB). Subunit boosters are considered a viable strategy to enhance BCG efficacy, which often wanes in adolescence. While many studies on booster subunit vaccines have concentrated on recombinant proteins with adjuvants, we developed a peptide-based, self-assembling and self-adjuvanting nanoparticle vaccine delivery platform.

Methods: In this delivery platform, a Mtb-derived peptide epitope, a HLA-E binding peptide and a 15-leucine moiety were conjugated into a linear peptide construct with the ability to self-assemble into nanoparticle. A total of 6 Mtb epitopes were selected to formulate the BCG booster multiepitope vaccine termed PNx6. The immunogenicity of PNx6 was evaluated in a murine model of TB using ELISA, ELISpot, FACS and multiplex assays, and its protective efficacy was determined in the C57BL/6 mouse model of aerosol Mtb infection.

Results: In vivo experimentation demonstrated that a subcutaneous boost of parenteral BCG vaccinated with PNx6 was safe and induced 350 folds higher production of peptide epitope-specific antibodies in serum and ~10 folds greater numbers of IFNy producing cells in both spleen and lung compared to BCG only vaccination. PNx6 boost also led to a significant increase in multifunctional T cells in lung and spleen. Furthermore, the protective efficacy of BCG boosted with PNx6 was about 3 folds higher than BCG only.

Discussion and Conclusion: Our results demonstrate that a parenteral PNx6 boost for BCG vaccination enhances anti-TB immunity and leads to significantly improved protective efficacy in murine TB model. The versatility of this multiepitope self-assembling self-adjuvanting nanovaccine delivery platform and the interchangeability of individual vaccine building blocks with different antigens holds promise as a viable solution for mitigating the TB pandemic on a global scale.

Funding Sources

This work was supported by the National Health and Medical Research Council of Australia (NHMRC) through an Ideas Grant (APP2001262) and an Investigator Grant (APP2008715) to AK.

Conflicts of Interest

G.Z. is co-inventor on a patent application entitled "Self-assembling, self-adjuvating system for delivery of vaccines" filed by the University of Queensland (application number: WO/2021/138721, PCT/AU2021/050012). The remaining authors declare no competing interests.

