M. tuberculosis antigens under diversifying evolutionary selection induce Th17 responses in human infection

Paul Ogongo, MSc, PhD

Assistant Researcher

University of California San Francisco

7th Global Forum on TB Vaccines

Prevention of Disease TB vaccines

POD vaccines: which *Mtb* antigens should we target?

Rare variable Mtb antigens as POD vaccine candidates

- Antigens with variable T cell epitopes = RVMA
- Hotspots of variable regions suggestive of diversifying evolutionary selection

Distinct *Mtb* antigen-specific CD4 T cell responses in controlled human TB

Hypothesis:

Human CD4 T cells with distinct *Mtb* antigen specificities differ in their functional responses that contribute to protective CD4 T cells

Household contacts (QFT+/HIV-) of confirmed index TB case(smear+/Xpert)

8 distinct Mtb antigens; synthesized as peptide pools

- 4 Rare variable Mtb antigen (RVMA)
- 4 classical conserved Mtb antigens

RVMA preferentially elicit Th17 responses

RVMA

RVMA preferentially elicit Th17 responses

RVMA skew T cells towards IL17 responses

Cohort 2: IL17 vs IFNy responses to individual RVMA

	Response Frequencies (% of participants with detectable cytokine ⁺ CD4 T cells)		Response Magnitudes (% of CD4 T cells that are cytokine ⁺) Median (interquartile range)		
	IL-17	IFNγ	IL-17	IFNγ	p*
Rv0010c	58	35	0.02 (0.001, 0.115)	0.001 (0.001, 0.047)	0.2437
Rv0012	58	58	0.07 (0.001, 0.385)	0.012 (0.001, 0.0775)	0.0054
RimJ	62	55	0.06 (0.001, 0.32)	0.01 (0.001, 0.087)	0.2157
LldD2	63	46	0.03 (0.001, 0.255)	0.001 (0.001,0.0305)	0.0391
*p values for the comparison of IL17 vs IFNγ magnitudes (Wilcoxon matched pairs)					

Th17 cells play a protective role in human TB

Suppression of Th17 responses is associated with progression to TB disease

Mtb-exposed individuals who remain IGRA negative display enrichment of Th17 cell-like functional programs

The Th17 cell-like functional programs were associated with a lack of progression to TB disease

Mtb-specific CD4+IL17+ T cells are enriched in Mtb-infected human lungs compared to matched blood and inversely correlate with plasma IL1- β

Scriba et al 2017; Nathan et al 2021; Sun et al 2024; Ogongo et al 2021

Vaccines that induce Th17 responses confer superior protection against Mtb

The Journal of Immunology

Mucosal Vaccination with Cyclic Dinucleotide Adjuvants Induces Effective T Cell Homing and IL-17–Dependent Protection against *Mycobacterium tuberculosis* Infection

Robyn M. Jong,^{*1} Erik Van Dis,^{*1} Samuel B. Berry,^{*} Xammy Nguyenla,[†] Alexander Baltodano,[†] Gabrielle Pastenkos,[‡] Chenling Xu,[§] Douglas Fox,^{*} Nir Yosef,^{§,¶,∥} Sarah M. McWhirter,[#] and Sarah A. Stanley^{*,†}

https://doi.org/10.1038/s41591-018-0319-9

LETTER

Prevention of tuberculosis infection and disease by local BCG in repeatedly exposed rhesus macaques

Karin Dijkman^{©1*}, Claudia C. Sombroek¹, Richard A. W. Vervenne¹, Sam O. Hofman¹, Charelle Boot¹, Edmond J. Remarque¹, Clemens H. M. Kocken¹, Tom H. M. Ottenhoff², Ivanela Kondova¹, Mohammed A. Khayum¹, Krista G. Haanstra^{©1}, Michel P. M. Vierboom¹ and Frank A. W. Verreck^{1*}

pj vaccines

www.nature.com/npjvaccines

Check for updates

ARTICLE OPEN

A protective, single-visit TB vaccination regimen by co-administration of a subunit vaccine with BCG

Karin Dijkman^{1,4,5}, Thomas Lindenstrøm $0^{1.5}$, Ida Rosenkrands¹, Rikke Søe², Joshua S. Woodworth 0^{1} , Cecilia S. Lindestam Arlehamn 0^{3} and Rasmus Mortensen 0^{1}

Cell Host & Microbe

CellPress

Article

nature

medicine

Airway T cells are a correlate of i.v. Bacille Calmette-Guerin-mediated protection against tuberculosis in rhesus macaques

Patricia A. Darrah,^{1,9} Joseph J. Zeppa,^{2,9} Chuangqi Wang,^{3,8,9} Edward B. Irvine,^{4,7} Allison N. Bucsan,¹ Mark A. Rodgers,² Supriya Pokkali, ¹ Joshua A. Hackney,¹ Megha Kamath,¹ Alexander G. White,² H. Jacob Borish,² L. James Frye,² Jaime Tomko,² Kara Kracinovsky,² Philana Ling Lin,⁶ Edwin Klein,⁹ Charles A. Scanga,² Galit Alter,⁴ Sarah M. Fortune,^{4,7} Douglas A. Lauffenburger,⁸ JoAnne L. Flynn,² Robert A. Seder,¹ Pauline Maiello,^{2,10} and Mario Roederer^{1,10,11,*}

Summary/Conclusions

- Rare variable *Mtb* antigens induce human Th17 responses in controlled TB
- Th17 cell responses are associated with a lack of progression to TB disease in human cohorts

Acknowledgements

Study participants

- Joel Ernst, MD
- Ernst Lab Members
 - Anthony Tran (past)
 - Julia Huffaker
 - Zach Howard PD20

Center for Tuberculosis

University of California San Francisco

FOUNDATION

