Prevention of infection with *Mycobacterium tuberculosis* by H4:IC31 vaccination or BCG revaccination in healthy adolescents: results of a randomized controlled trial (NCT02075203)

Mark Hatherill
South African Tuberculosis Vaccine Initiative
University of Cape Town, South Africa

Background & Rationale

Lack validated preclinical models, immune correlates of vaccine-mediated protection

Prevention of TB disease (POD) efficacy trials large, long and costly

Primary BCG vaccination partial protection (19%) against *M.tb* infection

Roy BMJ 2014

Can (re)vaccination prevent *M.tb* infection in a high transmission setting?

- *M.tb* infection >10-fold frequency TB disease
- Prevention of Infection (POI) trial shorter, smaller, less costly vs POD

Hawn MMBR 2014

Can POI trials be used as a decision-making tool for TB vaccine development?

- candidate vaccine up/down selection
- trigger expansion POD efficacy trials

Ellis Tuberculosis 2015
Background & Rationale

Acquisition, persistence and clearance of *M.tb* infection cannot be measured directly

Interferon-gamma release assays (IGRA) = indirect measure of immune sensitization to *M.tb*

IGRA more specific than TST

Pai Clin Microbiol Rev 2014

IGRA conversion negative \rightarrow positive \approx increased risk TB disease

Andrews AJRCCM 2015

Human, animal studies TST reversion positive \rightarrow negative \approx decreased risk of TB disease

Hawn MMBR 2014, Dharmadhikari Tuberculosis 2011

Clinical significance of IGRA reversion unclear

Andrews AJRCCM 2012

Sustained IGRA conversion more likely associated with sustained *M.tb* infection, increased risk TB disease, than transient IGRA conversion with reversion
Background & Rationale

Aimed to evaluate safety, immunogenicity, and prevention of initial and sustained QuantiFERON-TB Gold In-tube (QFT) conversion by H4:IC31® or BCG revaccination in healthy South African adolescents in a high TB transmission setting

Demonstration of efficacy

→ seek immune correlates of protection against *M.tb* infection
→ utility of POI design for up/down selection of TB vaccine candidates
→ impetus for larger trials to test POD vaccine efficacy in *M.tb*-uninfected populations

Proviso:

2 previous large randomized trials: no overall benefit of BCG revaccination for POD

Did not screen *M.tb* infection status or measure acquisition

33% efficacy in subset of Brazilian children 7-11 years

Rodrigues Lancet 2005
Barreto Vaccine 2011
Karonga PTG Lancet 1996
Trial Design

Randomized, placebo-controlled, partially-blinded
990 healthy, HIV-uninfected, QFT-negative, adolescents (12-17 years)
BCG vaccinated in infancy
Excluded: Previous TB disease, household TB contact
2 sites (SATVI, Worcester; Desmond Tutu HIV Centre, Cape Town)

3 arms, randomized 1:1:1
Double-blind intramuscular injection (D0 and D56)
 Saline placebo
 OR
 H4:IC31® (15μg H4:500nmol IC31®)
 OR
Open-label intradermal injection (D0)
 BCG Vaccine (Statens Serum Institut) (2-8 x 10⁵ CFU)

H4 (Sanofi Pasteur) subunit vaccine (mycobacterial antigens Ag85B, TB10.4)
IC31® adjuvant (Valneva)
H4:IC31® protection in pre-clinical models, safe and immunogenic in humans

Billeskov PLoS ONE 2012
Geldenhuys Vaccine 2015
Norrby Vaccine 2017
Trial Design

First cohort (n=90) additional immunogenicity

Follow-up contingent on QFT status D84 and M6, 12, 18 and 24
QFT+ D84 ‘washout’ period excluded
QFT+ M6, 12, 18, 24 returned 3, 6 months later; and EoS

South African national guidelines
Do not recommend IPT for HIV-negative *M. tb*-infected persons >5 years old
(high risk of reinfection)
Preventive therapy not provided - QFT converters
Outcome Measures

Safety Outcomes
- All participants ≥1 injection
- Solicited AE 7 days, unsolicited AE and injection site AE 28 days (placebo/H4:IC31®) or 84 days (BCG), SAE and AESI to EoS

Immunogenicity Outcomes
- Safety & immunogenicity cohort
- Intracellular cytokine staining (ICS) and flow cytometry

Efficacy Outcomes
- Analyzed mITT population, received ≥1 injection and QFT- D84
- Exploratory analyses ITT and PP population

Primary efficacy endpoint:
- Initial QFT conversion (IFNγ ≥0.35 IU)/mL post-D84

Secondary efficacy endpoint:
- Sustained QFT conversion through 6 months after (post-D84) QFT conversion

Exploratory efficacy endpoints:
- Sustained QFT conversion through EoS
- Alternative thresholds - initial/sustained QFT conversion
Statistical Considerations

Distinguish 50% rate reduction initial QFT conversion H4:IC31® or BCG vs placebo

- 80% power, 10% one-sided Type 1 error rate
- Prioritize detection proof-of-concept signal (at expense of possible False+)

Not powered to distinguish POI efficacy H4:IC31® vs BCG
Not powered to distinguish POD efficacy

Sample size (330/arm) expected → 64 initial QFT conversion endpoints

Efficacy estimates based on Hazard Ratios (Cox regression model)

Primary, secondary efficacy analyzed using log-rank tests, H4:IC31® or BCG versus placebo,

Report both –

- 80% confidence intervals (pre-specified significance criteria)
- 95% confidence intervals (traditional significance criteria)
Results

Screening April 2014

<table>
<thead>
<tr>
<th>Screened (n=2976)</th>
<th>Excluded (n=1986)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QFT(+) (n=1405)</td>
</tr>
<tr>
<td></td>
<td>Not meeting other inclusion criteria (n=469)</td>
</tr>
<tr>
<td></td>
<td>Withdrew assent/consent (n=27)</td>
</tr>
<tr>
<td></td>
<td>Other reasons (n=85)</td>
</tr>
</tbody>
</table>

Randomized (n=990)

Allocated to placebo (n=329)
ITT set

Allocated to H4:IC31 (n=331)
ITT set

Allocated to BCG (n=330)
ITT set

Safety analysis set (n=329)

QFT(+) or missing at Day 84 (n=19)
Safety follow up only

QFT(-) at Day 84 (n=310)
mlTT analysis set
Immunogenicity analysis subset (n=27)

Second injection given out of window (n=4)
PP analysis set (n=306)

Did not receive at least one injection (n=1)

Safety analysis set (n=330)

QFT(+) or missing at Day 84 (n=22)
Safety follow up only

QFT(-) at Day 84 (n=308)
mlTT analysis set
Immunogenicity analysis subset (n=28)

Second injection not given (n=2) or given out of window (n=9)
PP analysis set (n=297)

Safety analysis set (n=330)

QFT(+) or missing at Day 84 (n=18)
Safety follow up only

QFT(-) at Day 84 (n=312)
mlTT analysis set
Immunogenicity analysis subset (n=28)

PP analysis set (n=312)

LPLV August 2017

Loss to follow-up 4% (41/990) through EoS
Results: Baseline characteristics did not differ between arms

<table>
<thead>
<tr>
<th>Variable</th>
<th>Statistic</th>
<th>Placebo (n=329)</th>
<th>H4:IC31® (n=330)</th>
<th>BCG (n=330)</th>
<th>Total (n=989)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site</td>
<td>SATVI n (%)</td>
<td>306 (93.0)</td>
<td>306 (92.7)</td>
<td>305 (92.4)</td>
<td>917 (92.7)</td>
</tr>
<tr>
<td></td>
<td>DTHC n (%)</td>
<td>23 (7.0)</td>
<td>24 (7.3)</td>
<td>25 (7.6)</td>
<td>72 (7.3)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>Median (min, max)</td>
<td>14 (12, 17)</td>
<td>14 (12, 17)</td>
<td>14 (12, 17)</td>
<td>14 (12, 17)</td>
</tr>
<tr>
<td>Self-declared Race</td>
<td>Asian n (%)</td>
<td>1 (0.3)</td>
<td>1 (0.3)</td>
<td>1 (0.3)</td>
<td>3 (0.3)</td>
</tr>
<tr>
<td></td>
<td>Black African</td>
<td>120 (36.5)</td>
<td>120 (36.4)</td>
<td>126 (38.2)</td>
<td>366 (37.0)</td>
</tr>
<tr>
<td></td>
<td>Caucasian n (%)</td>
<td>1 (0.3)</td>
<td>1 (0.3)</td>
<td>3 (0.9)</td>
<td>5 (0.5)</td>
</tr>
<tr>
<td></td>
<td>Cape Mixed Ancestry n (%)</td>
<td>207 (62.9)</td>
<td>208 (63.0)</td>
<td>200 (60.6)</td>
<td>615 (62.2)</td>
</tr>
<tr>
<td>Sex (females)</td>
<td>n (%)</td>
<td>169 (51.4)</td>
<td>189 (57.3)</td>
<td>162 (49.1)</td>
<td>520 (52.6)</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>Median (min, max)</td>
<td>19.9 (14.3, 36.8)</td>
<td>19.6 (13.8, 38.3)</td>
<td>19.4 (13.1, 36.9)</td>
<td>19.6 (13.1, 38.3)</td>
</tr>
</tbody>
</table>
Results: Safety

Both vaccines - acceptable safety profile

550 participants ≥1 AE

- H4:IC31® and placebo similar AE profile
- AE more frequent BCG arm (injection site AE, mild-moderate severity)
- Upper respiratory tract infection less frequent BCG vs placebo and H4:IC31 (2.1%, 7.9%, and 9.4%, respectively; p<0.001)

In total:
- 4 severe AE, 19 SAE
- No AESI or related severe AE or related SAE
- 1 death (suicide; placebo arm)

No difference in rate of severe AE or SAE between study arms

No cases of active TB disease were observed
Results: Immunogenicity

High baseline BCG responses
Both H4:IC31 and BCG were immunogenic
Results: Primary efficacy endpoint: Initial QFT Conversion

Total 134 initial QFT conversions (14.4%) = incidence 9.9 per 100 person-years

Placebo 15.8%

H4:IC31 14.3%

BCG 13.1%
Results: Primary efficacy endpoint: Initial QFT Conversion

Placebo 15.8%

H4:IC31 14.3% VE 9.4% (80% CI -18.3; 30.6) (95% CI -36.2; 39.7)

BCG 13.1% VE 20.1% (80% CI -4.8; 39.1) (95% CI -21.0; 47.2)

*Note: Very few participants remaining on study after M24
Results: Secondary Efficacy Endpoint: Sustained QFT Conversion

82 sustained QFT converters (8.8% of all participants; 62.6% of initial QFT converters)

- **Placebo**: 36/310 11.6%
- **H4:IC31**: 25/308 8.1%
- **BCG**: 21/312

IFN (IU/mL)

QFT conversion month
Results: QFT Reversion

High QFT reversion rate (37.6%)

Placebo 12/48 (25.0%)

H4:IC31 17/42 (40.5%)

BCG 18/39 (46.2%)
Results: Secondary efficacy endpoint: Sustained QFT Conversion

<table>
<thead>
<tr>
<th>Group</th>
<th>Conversion Rate</th>
<th>VE</th>
<th>80% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>11.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H4:IC31</td>
<td>8.1%</td>
<td>30.5%</td>
<td>(3.0; 50.2)</td>
</tr>
<tr>
<td>BCG</td>
<td>6.7%</td>
<td>45.4%</td>
<td>(22.3; 61.6)</td>
</tr>
</tbody>
</table>

![Graph showing time to sustained QFT conversion](image-url)
Results: Secondary efficacy endpoint: Sustained QFT Conversion

<table>
<thead>
<tr>
<th>Group</th>
<th>Sustained QFT Conversion (%)</th>
<th>80% CI</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>(11.6%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H4:IC31</td>
<td>(8.1%) VE 30.5%</td>
<td>(3.0; 50.2)</td>
<td>(-15.8; 58.3)</td>
</tr>
<tr>
<td>BCG</td>
<td>(6.7%) VE 45.4%</td>
<td>(22.3; 61.6)</td>
<td>(6.4; 68.1)</td>
</tr>
</tbody>
</table>

Participants with sustained QFT conversion (%)

Time to sustained QFT conversion (Months)

At Risk
Placebo | 310
 | 308
 | 312
H4:IC31 | 302
 | 303
 | 310
BCG | 287
 | 288
 | 297

Placebo
H4:IC31
BCG
Results: Exploratory efficacy endpoints

<table>
<thead>
<tr>
<th></th>
<th>Sustained QFT conversion EoS (≥0.35IU/mL)</th>
<th>Sustained QFT conversion (<0.2 to >0.7IU/mL)</th>
<th>Initial QFT conversion (>4IU/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Placebo 11.6%</td>
<td>Placebo 10.0%</td>
<td>Placebo 10.6%</td>
</tr>
<tr>
<td></td>
<td>H4:IC31 7.8% VE 34.2% (80% CI 7.7; 53.0)</td>
<td>H4:IC31 7.8% VE 23.2% (80% CI -8.8; 45.8)</td>
<td>H4:IC31 7.1% VE 34.5% (80% CI 6.8; 54.2)</td>
</tr>
<tr>
<td></td>
<td>BCG 6.4% VE 48.2% (80% CI 25.9; 63.8)</td>
<td>BCG 6.1% VE 41.6% (80% CI 15.2; 59.8)</td>
<td>BCG 6.1% VE 45.1% (80% CI 20.5; 62.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(95% CI -10.4; 60.7)</td>
<td>(95% CI -3.3; 67.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(95% CI 10.5; 70.0)</td>
<td>(95% CI 3.8; 69.3)</td>
</tr>
</tbody>
</table>
Summary 1

Both H4:IC31 and BCG safe and immunogenic

Neither H4:IC31® nor BCG revaccination prevented initial QFT conversion

Vaccination can reduce rate of sustained QFT conversion in high TB transmission setting

Secondary endpoint: Sustained QFT conversion

Modest signal H4:IC31® (VE 30.5%; 80% confidence 3 – 50%)

- met pre-defined significance criteria for POI proof-of-concept
- did not meet conventional criteria for statistical significance

Convincing efficacy signal BCG (VE 45.4%; 95% confidence 6 – 68%)

- met traditional significance criteria for Phase 2b trials
Possible explanations consistent with the results

1) No reduction in rate initial QFT conversion (primary endpoint)
 - vaccination did not avert initial colonization, or antigen trafficking to lymphoid tissues to trigger adaptive immunity

2) Reduction in rate initial QFT conversion >4 IU/mL (exploratory endpoint)
 - vaccine-mediated reduction in bacterial replication following initial infection

3) Reduction in rate sustained QFT conversion (secondary endpoint)
 - vaccine-mediated QFT reversion associated with enhanced bacterial control or even clearance

Billeskov Plos one 2012
Impact and next steps...

1) *Evidence POI design can detect vaccine efficacy in high M.tb transmission setting*
 - identified sustained QFT conversion as suitable endpoint
 - cannot confirm utility of initial QFT conversion*
 - POI needs validation as tool for vaccine up-selection in future POD trial

2) *Modest H4:IC31 signal, suggests biological effect*
 - first indication of protection against *M.tb* in humans by novel subunit vaccine
 - impetus for development of related subunit vaccines

3) *Convincing BCG efficacy signal*
 - allow search for immune correlates of protection
 - justifies (re)evaluation of BCG revaccination for POD in *M.tb*-uninfected persons

* ≥0.35IU/mL threshold
Thanks to:

The participants, families, and study communities of Worcester and Emavundleni

The C-040-404 Study Team

Elisa Nemes1, Hennie Geldenhuys1, Virginie Rozot1, Kathryn Tucker Rutkowski2, Frances Ratangee1, Nicole Bilek1, Simbarashe Erasmus1, Asma Toefy1, Humphrey Mulenga1, Willem A. Hanekom1, Steven G. Self3, Linda-Gail Bekker4, Robert Ryall5#, Sanjay Gurunathan5, Carlos A. Diaz-Granados5, Peter Andersen6, Ingrid Kromann6, Thomas Evans2, Ruth D. Ellis2, Bernard Landry2, David A. Hokey2, Robert Hopkins2, Ann M. Ginsberg2, Thomas J. Scriba1; Mark Hatherill1; Charmaine Abrahams1, Marcellene Adeniye2, Hadn Africa1, Deidre Albertyn7, Fadia Alexander1, Julia Amsterdam1, Denis Arendsen1, Hanlie Bester7, Elizabeth Beyers1, Natasja Botes1, Narelle Botes1, Samantia Braaf1, Roger Brooks5,9, Yolandi Cloete1, Alessandro Company1, Kristin Croucher7, Ilse Davids1, Guy de Bruyn5,9, Bongani Diamond1, Portia Dlakavu1, Palesa Dolo1, Sahlah Dubel2, Cindy Elbring1, Margaret Erasmus1, Terence Esterhuizen1, Christine Fattore2, Sebastian Gelderbloem7, Diann Gempies1, Sandra Goliath1, Peggy Gomes5,9, Yolande Gregg1, Elizabeth Hamilton1, Johanna Hector1, Roxanne Herling1, Yulandi Herselman1, Jane Hughes1, Devin Hunt2, Henry Issel1, Helene Janosczyk5,9, Lungisa Jaxa1, Carolyn Jones1, Jateel Kassiem1, Sophie Keffers1, Xoliswa Kelepu1, Alana Keyser1, Alexia Kieffer5,9, Sandra Kruger1, Maureen Lambrick7, Phumzile Langata1, Maria Lempicki2, Marie-Christine Locas5,9, Angelique Luabea1, Lauren Mactavie1, Lydia Makunzi1, Pamela Mangala1, Clive Maquela1, Boitumelo Mosito1, Angelique Mouton1, Mariana Mullins1, Julia Noble1, Onke Nombida1, Dawn O’Dee2, Amy O’Neil5,9, Rose Ockhuis1, Saleha Omarjee8, Fajwa Opperman1, Dhaval Patel5,9, Christel Petersen1, Abraham Pretorius1, Debbie Pretorius1, Michael Raine2, Rodney Raphela1, Maigan Ratangee1, Christian Rauner5,9, Susan Rossouw1, Surita Roux4, Elisma Schoeman1, Constance Schreuder1, Cashwin September1, Justin Shenje1, Barbara Shepherd2, Muki Shey8, Heather Siefers2, Eunice Sinandile1, Danna Skea5,9, Marcia Steyn1, Jin Su5,9, Sharon Sutton2, Anne Swarts1, Patrick Syntin5,9, Michele Tameris1, Petrus Tyambetyu1, Arrie van der Merwe7, Elize van der Riet1, Dorothy van der Vend4, Denise van der Westhuizen1, Anja van der Westhuizen7, Elma van Rooyen1, Ashley Veldsman1, Helen Veldsman1, Emerencia Vermeulen1, Sindle Wiseman Matiwa1, Noncedo Xoyana1.

1South African Tuberculosis Vaccine Initiative; 2Aeras; 3Statistical Center for HIV Research; 4The Desmond Tutu HIV Centre; 5Sanofi Pasteur; 6Statens Seruminstitutet; 7Aeras Global TB Vaccine Foundation; 8Aeras South Africa Endpoint Assay Laboratory; 9Sanofi Pasteur

Independent Data Monitoring Committee

Hassan Mahomed, Peter Donald, Wasima Rida, Gil Price, Matthew Downs, James Balsley, Bernard Fourie

Local Medical Monitors

Anthony Hawkridge and Zainab Waggie

Consultants

Jacqueline Shea, Danilo Casimiro, Chris Karp, Chris Wilson and Jim Tartaglia

Sponsor and Funders