VIR-2020: a CMV-based vaccine candidate for TB

Aurelio Bonavia

February 21, 2018, TB Global Forum, New Delhi, India
INFECTIONIOUS DISEASES

Massive Unmet Need

2,000,000,000 People latently infected with tuberculosis

260,000,000 People living with chronic hepatitis B

37,000,000 People infected with HIV

2,000,000 Number of antibiotic resistance cases annually in US

240,000 Number of hospitalizations for RSV annually in US

36,000 Number of deaths from flu in the US

Source: World Health Organization (WHO), U.S. Center for Disease Control (CDC)
• Private company headquartered in San Francisco (CA) with locations in Portland (OR), Boston (MA), and Bellinzona (Switzerland)

• Major partnership with Bill and Melinda Gates Foundation for development of HIV and TB vaccines

• Our mission is to utilize advances in science, technology, and medicine to transform the care of people with or at risk of serious infectious diseases inclusive of low and middle income countries (LMIC)

• Current programs focus on: TB, HIV, chronic hepatitis B, respiratory viruses (Influenza, RSV, HMPV, PIV)
CMV Vector: Unique candidate vaccine features

- Re-infection and persistence are common despite pre-existing CMV immunity

- Profound attenuation (titers, tropism, spread and shed)

- Our CMV vectors elicit strong immune responses:
 - Long-term maintenance of high frequency of effector memory T cells
 - T cells are maintained in organs (including mucosal and lymphoid tissues) regardless of route of administration
 - Programmable CD8+ T cell response (expanded breath, MHC-II and HLA-E restriction)
Using CMV Specific Deletions: Non-overlapping CD8+ T cell responses are programmable

- **Conventional Canonical MHC-I restricted**
- **Conventional Non-Canonical MHC-I restricted**
- **Unconventional MHC-E restricted**
- **Unconventional MHC-II restricted**

- **CMV Vector**

- **Other Viral Vectors**
 - Conventional Canonical MHC-I restricted
 - Conventional Non-Canonical MHC-I restricted
 - Unconventional MHC-E restricted
 - Unconventional MHC-II restricted

- **UL146/147** • CXC chemokine-like proteins
- **UL128/130** • Pentameric complex
 • Tropism (required for entry in epithelial and endothelial cells but not for fibroblasts)
Proof of Concept in Rhesus Macaques

Two NHP studies showed protection against low dose challenge with Mtb Erdman (Hansen et al.; 2018)

- 41% of animals showed no TB disease by CT scan and necropsy
- Overall 70% reduction in TB infection/disease (lung and extra-pulmonary disease)
- Unconventional immune response is not required for TB protection
Efficacy in NHPs: Challenge study with Mtb after vaccination with RhCMVs

EXP 1

<table>
<thead>
<tr>
<th></th>
<th>Mock</th>
<th>BCG</th>
<th>68-1-9Ag</th>
<th>BCG+68-1-9Ag</th>
</tr>
</thead>
</table>

25 CFU Mtb Erdman intrabronchial (IB) Poisson modeling
- 68.7% Mtb recovery and 67.3% based on pathology score against placebo
- 57.7% and 51.4% against BCG

EXP 2

<table>
<thead>
<tr>
<th></th>
<th>Mock</th>
<th>68-1-9Ag</th>
<th>68-1.2-9Ag</th>
<th>68-1-6Ag</th>
</tr>
</thead>
</table>

10 CFU Mtb Erdman IB Poisson modeling
- 5/9 (68-1-9A); 3/8 (68-1.2-9Ag); 5/9 (68-1-6Ag) had no sign of disease
- 9Ag and 6Ag gave similar protection with 68-1

6 Ag fusion protein: Ag85A- ESAT-6-Rv3407- Rv2626-RpfA-RpfD
9 Ag: 4 vectors encoding the 6Ag + Ag85B + Rv1733 + RpfC
rhCMV 68-1: UL128/130 deleted, fibroblast tropic and unconventional immune response
rhCMV 68-1.2: UL128/130 repaired and conventional immune response

Nature: Hansen et al., 2018
Transcriptomics

• Innate response to Mtb challenge is modified in rhCMV/TB protected rhesus macaques
 • The 28d after Mtb challenge signature (IFN module) was predictive of outcome at necropsy
 • TB-disease associated transcriptional signature was profoundly reduced in the vast majority of rhCMV/TB vaccinated animals with complete MTB control

• Correlate of protection; combined innate and adaptive immunity
 • The signature of genes preferentially expressed by neutrophil degranulation and innate immunity in vaccinated animals prior to challenge delineates the protection of vaccinated animals
VIR-2020: Characteristics of the human CMV vector expressing Mtb antigens

• Antigens: 6 Ag fusion proteins (Ag85A, ESAT-6, Rv3407, Rv2626, RpfA, RpfD) covering active, latent and resuscitation phases of Mtb life cycle

• Vector retains CMV drug susceptibility

• Deletion of UL82 (pp71)
 - Important for immediate early (IE) gene expression
 - MOI dependent \textit{in vitro} growth attenuation
 - Human CMV-Δpp71 does not reactivate in a humanized mouse model
 - Rhesus CMV-Δpp71 does not shed in NHP urine
 - Rhesus CMV-Δpp71 is deficient in spread (no spread to organs, no transmission to cohabitating animals and no transmission through leukocyte transfer)

• Additional safety measure: incorporation of miR124 micro-RNA sequence which prevents CNS replication

• Deletion of UL128/130 which renders the virus fibroblast-tropic confers further attenuation
Some Key Features of Manufacturing

- Grown in MRC5 cells
- About 30 days process (upstream/downstream)
- Supernatants at ~10^6 FFU/ml, final Drug Product at ~5x10^6 FFU/ml
- All upstream and downstream manufacturing steps are in closed systems
- Both intact and deleted viruses have been successfully reconstituted
- Genetic stability is currently being assessed
- Stable formulation
Plan for First in Human Trial

- Phase 1 in healthy adult volunteers (non-BCG vaccinated, QFT-, HIV-, CMV+)
- Double-blind placebo controlled study
- Dose escalation and expansion
- Two 12 week apart subcutaneous doses with six month follow up after second dose
- Endpoints
 - Primary endpoints: **Safety** including shedding in blood, urine and saliva
 - Secondary endpoint: **Immunogenicity** (CD4+/CD8+, conventional/unconventional and antibodies to insert-specific TB-6Ags)
 - Exploratory endpoints: Biomarkers/transcriptomics, immune response characterization
Tentative Timelines

• 2018
 Process development, analytics, stability and generation of Virus Pre-Seed

• 2019
 Vector selection and GMP manufacturing

• 2020
 First-in-human
Thank You!

<table>
<thead>
<tr>
<th>OHSU</th>
<th>BMGF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marcel Curlin</td>
<td>Pervin Anklesaria.</td>
</tr>
<tr>
<td>Scott Hansen</td>
<td>Emilio Emini.</td>
</tr>
<tr>
<td>Eric Vela</td>
<td>Gilla Kaplan</td>
</tr>
<tr>
<td></td>
<td>Cathy Baunsbach</td>
</tr>
<tr>
<td></td>
<td>Willem Hanekom</td>
</tr>
<tr>
<td></td>
<td>Lynda Stuart</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IAVI</th>
<th>VIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coreen Booth</td>
<td>Rachel Ahmed</td>
</tr>
<tr>
<td>Eddy Sayeed</td>
<td>Mike Kamarck</td>
</tr>
<tr>
<td></td>
<td>Vir-PDX Team</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aeras</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Danny Casimiro</td>
<td>Agnes Chenine</td>
</tr>
<tr>
<td>Tom Evans</td>
<td>Ann Ginsberg</td>
</tr>
<tr>
<td>Dominick Laddy</td>
<td>Polly Limbach</td>
</tr>
<tr>
<td>Dereck Tait</td>
<td></td>
</tr>
</tbody>
</table>
The End of the Beginning