A Critical Juncture: progress in TB vaccine clinical development

5th Global Forum on TB Vaccines
New Delhi, India

Ann M. Ginsberg, MD, PhD
February 21, 2018
Information on candidates in clinical development is self-reported by vaccine sponsors, coordinated by the Working Group on New TB Vaccines and updated September 2017.
Target Populations

• Infants (healthy)
• Adolescents/Adults (healthy)
• TB patients
Increasing focus on adolescent/adult vaccines: to stop the cycle of transmission - will prevent the spread of TB to children as well.

See presentation by R. White (LSHTM)
Therapeutic Indications

• Prevention of TB disease
 – BCG replacement (infants)
 – BCG boost (proximal – infants)
 – BCG boost (distal – adol/adults)

• Prevention of recurrent TB

• TB treatment shortening +/or increased cure rates (adjunct to treatment)
Key Challenges in TB Vaccine Development

- Complicated pathogen and disease
- No known correlate of protection
- Not yet known if animal models are predictive of human TB/protection
- Multiple vaccine candidates in clinical development
- Licensure trials long and expensive
- Severely underfunded
Approaches to Streamlining Efficacy Trials

- Conduct Proof of Concept trials in high-risk populations (see Tait et al)
- Use Phase 2 trials to establish “meaningful biological effect” of vaccine (triaging tool)

Decreasing:
- Risk
- Cost
- Time
Clinical Trial Endpoints

- Prevention of TB disease (POD)
- Prevention of Mtb infection (POI)
- Prevention of TB disease recurrence (POR)
Clinical Trials
(Not an exhaustive list)
Upcoming Data in TB Vaccine Efficacy Trials

<table>
<thead>
<tr>
<th>PHASE</th>
<th>PARTICIPANTS</th>
<th>EFFICACY</th>
<th>LOCATION</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase III</td>
<td>10000 PPD+</td>
<td>Prevention of disease</td>
<td>China</td>
<td>2018</td>
</tr>
<tr>
<td>Phase II</td>
<td>990 Q-</td>
<td>Prevention of infection</td>
<td>South Africa</td>
<td>1Q2018</td>
</tr>
<tr>
<td>Phase IIb</td>
<td>3573 Q+</td>
<td>Prevention of disease</td>
<td>South Africa, Kenya, Zambia</td>
<td>2Q2018</td>
</tr>
<tr>
<td>Phase IIb</td>
<td>650 Q-</td>
<td>Prevention of infection</td>
<td>Tanzania</td>
<td>2018</td>
</tr>
<tr>
<td>Phase II/III</td>
<td>2000 TB+</td>
<td>Prevention of recurrence</td>
<td>India</td>
<td>2020</td>
</tr>
</tbody>
</table>

Anhui Zhifei Longcom: AnHui Zhifei Longcom Biologic Pharmacy Co., Ltd; SSI: Statens Serum Institute; VPM: Vakzine Projekt Management GmbH; SII: Serum Institute of India

Presentation of results this session, M. Hatherill

Modified from M-A Demoitie, GSK
New TB Vaccines are Achievable

Evidence:

- BCG vaccine provides partial protection; for longer duration than previously recognized
- QFT/TST reverters
- QFT/TST resisters
- 90% of infected indivs. remain ‘LTBI’
- LTBI is partially protective against disease

➢ Vaccines can improve on natural immunity (e.g., diptheria, tetanus, pneumococcal conjugate vaccines)
A Critical Juncture

- Improved animal models
- More diverse pipeline under development
- Progress towards a human challenge model
- Novel Phase 2 trial designs in high risk populations
- Imminent results from multiple efficacy trials
- Biomarker/signature/correlate discovery
TB Vaccine R&D is Severely Underfunded

- Annual global cost of TB ~ $20B ($200B over next 10 years)\(^1\)
- Cost to develop one vaccine ~ $1.25B over 10 years\(^2\)
- 2016 funding for TB vaccine R&D: $79M\(^3\)
- 2016 funding for HIV vaccine R&D: $733M\(^3\)

Now more than ever is the time to ensure TB vaccine R&D gets the funding it needs.

Recent Major Funders and Aeras R&D Partners
Current Clinical Sites and Networks

With special thanks to the sites and participants and their families in our clinical trials
Thank You