MECHANISMS OF ATTENUATION AND PROTECTION OF MTBVAC:

a live attenuated TB vaccine moving to clinical efficacy trials in endemic countries
Breaking Transmission with Vaccines: The Case for Tuberculosis

Individuals with LTBI had 79% lower risk of Progressive TB after reinfection than uninfected individual

Andrews et al CID 2012

TB INFECTION only 5-10% will develop TB disease

Gonzalo et al Microbiology Spectrum 2017

Lytic cycle of lambda phage, similar to active TB disease

Lysogenic cycle of lambda phage, resembles LTBI
M. tuberculosis Vaccine Antigens, Ag85B and ESTA-6, are differentially expressed during infection.

Ag85B early expressed during infection.

ESTA-6 constantly expressed during all infection.
It is difficult to overcome the response induced by *M. tuberculosis* infection.

Clinical Trial H1 IC31: Ag85B + Esat6

H1:IC31 vaccination is safe and induces long-lived TNF-a+IL-2+CD4 T cell responses in MTB infected and uninfected adolescents.

RATIONALE FOR DEVELOPING MTBVAC

Following Pasteur’s postulates for attenuated vaccines. Learning from BCG

- ATTENUATE A PATHOGEN FROM HUMAN ORIGIN
- SELECT A WORLDWIDE DISTRIBUTED *M. tuberculosis* CLINICAL ISOLATE
- WHICH GENE(S) TO INACTIVATE?
- AVOID LABORATORY SUBCULTURE: INDUSTRIAL PARTNER
ATTENUATION, PROTECTION & IMMUNOGENICITY

PRECLINICAL & PROOF-OF-CONCEPT STUDIES (2001-2012)

Douglas Young “road map”

INDUSTRIAL DEVELOPMENT FREEZE-DRIED MTBVAC (2008-2011)

- Original lab strain MTBVAC (P0) 2008
- Master Seed Lot (MSL)
- Working Seed Lot (WSL)
- Final Lot (at least 2 clinical lots)
- Release of Final Product 2011
FIRST GENEVA CONSENSUS CRITERIA: CONSTRUCTION OF MTBVAC
NO ANTIBIOTIC RESISTANCE MARKERS
TWO STABLE INDEPENDENT MUTATIONS

MTBVAC

phoP

fadD26

SECOND GENEVA CONSENSUS: Criteria for further Clinical Development Phase 1 to 3

Esteban Rodriguez

Jelle Thole

PDT: Product Development Team TBVI

CDT: Clinical Development Team TBVI
Transcription factor PhoP plays an essential role in MTB virulence.
~2-4% ORFS MTB genome under PhoP control (microarrays):
mainly genes implicated in virulence or immunomodulation.

PhoP

RESPIRATION
narK1, nirA, cysH, ald, nuoBCDK

STRESS PROTEINS
(hsp) groEL2

HYPOXIC RESPONSE
1. INITIAL (dosS/R)
2. ENDURING

iCl

PERSISTENCE

POLYKETIDE- DERIVED LIPIDS
Immunomodulators

LIPID METABOLISM
SL, DAT, PAT +lipF
MECHANISMS OF ATTENUATION AND PROTECTION OF MTBVAC:

CONSEQUENCE OF *fadD26* DELETION: loss of major virulence factor PDIM

CONSEQUENCE OF *phoP* DELETION: loss of SL, PAT, DAT; impaired ESAT6 SECRETION and increased secretion of MTB antigens

*Modified from Broset et al. mBio. 2015
Gonzalo et al. Plos One 2008*
MECHANISMS OF PROTECTION OF MTBVAC:

MTBVAC, 519 MORE EPITOPES THAN BCG

MTBVAC → 1603 epitopes

BCG → 1084 epitopes

Marinova et al. Expert Rev Vaccines 2017

Gonzalo-Asensio et al. Frontiers in Immunology 2017
Improved protection of MTBVAC as compared to BCG is associated with T-cell mediated response to CFP10/ESAT6

Ag85B: BCG a polymorphism unstable protein
(Copin et al. 2014)

ESAT6/CFP10 present in RD1

MHC Haplotypes:
- H-2b
- H-2d
- H-2k

Protection in lungs (very low-dose H37Rv challenge: ≈ 20 CFU)

Nacho Aguilo

Aguilo et al 2017 Nature Communications
ESAT6 (RD1)
A Double Edged Sword
Host immune system / *Mycobacterium tuberculosis*

Latent TB Infected (LTBI)

90% LTBI
GRANULOMA = CONTENTION

1/3 POPULATION

The acquired cellular response, by CD4 T cells, provides protective immunity

- TST +
- QFT +

TB LUNG DISEASE

5-10% LTBI INFECTED

CD4 T cells, also promoting the development
CASEOUS NECROSIS REQUIRED FOR TRANSMISSION

RD1
31FP10) 1 epitopes (PPE68/ESAT6/C

RD1
(ESAT6/CFP10)
AFTER 100 YEARS OF BCG FIRST EFFICACY TRIAL OF A TB VACCINE

Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial

Tameris et al Lancet. 2013

Michele D Tameris⁎, Mark Hatherill⁎, Bernard S Landry, Thomas J Scriba, Margaret Ann Snowden, Stephen Lockhart, Jacqueline E Shea, J Bruce McClain, Gregory D Hussey, Willem A Hanekom, Hassan Mahomed†, Helen McShane†, and the MVA85A O20 Trial Study Team

TODAY STILL LEARNING FROM THIS CLINICAL TRIAL

Serial QuantiFERON testing and tuberculosis disease risk among young children: an observational cohort study

Andrews et al Lancet Respiratory Medicine 2017

Jason R Andrews, Elisa Nemes, Michele Tameris, Bernard S Landry, Hassan Mahomed, J Bruce McClain, Helen A Fletcher, Willem A Hanekom, Robin Wood, Helen McShane, Thomas J Scriba, Mark Hatherill

INVESTIGATE THE RELATION BETWEEN QFT CONVERSION INF-γ VALUES AND RISK OF TB
QFT conversion at interferon-γ values between 0.35–4.00 IU/ml did not have significantly increased risk of TB disease.

QFT <0.35 IU/ml
QFT 0.35 – 4.00 IU/ml
QFT >4.00 IU/ml

Percentage TB–free survival from day 336 study visit, stratified by quantitative QFT.

QFT + >4.00 IU/ml associated with substantially increased disease incidence

QFT - <0.35 IU/ml, QFT + 0.35–4.00 IU/ml NO INCREASED RISK OF DISEASE

Andrews et al Lancet Respir Med 2017
CLINICAL DEVELOPMENT MTBVAC

- **2010**
 - MTBVAC final lot
 - May 2011

- **2011**
 - Non-clinical studies to support clinical evaluation
 - 25 Aug’10 – 20 Dec’11

- **2012**
 - Phase I CTA Preparation
 - Oct’11 – April’12

- **2013**
 - Long-term, real time stability studies

- **2014**
 - First ever live attenuated *M. tuberculosis* vaccine to enter clinical trial

- **2015**
 - PHASE Ia HEALTHY ADULTS in CHUV Switzerland
 - PPD, BCG, HIV (18-45 yrs)
 - Approval
 - Oct 2012

- **2016**
 - PHASE Ib in NEWBORNS
 - With a safety arm in adults (BCG+, PPD-, HIV-)
 - New born vaccination phase
 - 16 Feb - 21 Sep 2016

- **2017**

François Spertini
Spertini et al Lancet Respiratory Medicine 2015
MTBVAC Phase 1a ADULTS Clinical Trial

Vaccination with MTBVAC induces a CFP10-specific immune response in humans

Aguilo et al. 2017 Nat Comm
PHASE 1B DOSE-ESCALATION SAFETY AND IMMUNOGENICITY OF MTBVAC IN NEWBORNS (with a Safety Arm in Adults (MTBVAC-Ph1b))

Michele Tameris

Tom Scriba

Mark Hatherill

Helen Mearns

ClinicalTrials.gov
NCT02729571
Efficacy Evaluation of a New TB Vaccine:

In Newborns: A pre-exposure vaccines could allow for reliable efficacy determination.

In Adults/Adolescents: More impact, but previous sensitization to BCG, MTB or NTM could have potential masking/blocking effects.

Role of Adults/Adolescents in the Transmission of TB and TB Vaccine Strategies.
VACCINATION AT BIRTH (NEONATES): PHASE 2A
Dose-Defining Safety and Immunogenicity Study and Capacity Building to Support Vaccine Efficacy Trials in TB-Endemic Regions of Sub-Saharan Africa.

PI. DR. MICHELE TAMERIS (SATVI)

Expected trial initiation date: / 3rd Quarter 2018
RE-VACCINATION IN ADOLESCENTS / ADULTS: PHASE 2A
Randomized, Double-blind, Active-controlled, Safety, Immunogenicity, and Dose-escalation Study in Adults with and without Latent Tuberculosis Infection in South Africa.

PI ANGELIQUE KANY KANY LUABEYA (SATVI)

Expected trial initiation date: 2nd Quarter 2018
A New TUBERCULOSIS VACCINE:

LIVE VACCINES
(Huge experience in the production, distribution and use of BCG)

Safer / Better than BCG