Clinical development of ID93 + GLA-SE as a prophylactic or therapeutic vaccine for tuberculosis

Tracey Day, PhD
Senior Scientist
Infectious Disease Research Institute

5th Global Forum on TB Vaccines

SG Reed¹, RN Coler¹, C Casper¹, TA Day¹, A Penn-Nicholson²; M Tameris²; R Ellis³; M Hatherill², Z Sagawa¹, AM Beckmann¹, AM Ginsberg³, TJ Scriba², R Cho⁴, H Lee⁴, YA Kang⁴, E Cho⁵, R Oh⁵, YH Choi⁵, and the TBVPX-113, 114, and 203 Study Teams¹,²,³

¹IDRI, Seattle, Washington; ²South African Tuberculosis Vaccine Initiative, University of Cape Town, South Africa; ³Aeras, Rockville, Maryland; ⁴Yonsei University College of Medicine, ⁵Quratis, Seoul, South Korea
Strategies for TB Vaccine Development

Prophylactic
 Pre-infection
 - prevent infection and/or disease
 - either initial or sustained infection
 Post-infection
 - prevent disease
 - prevent reactivation from latency

Immunotherapy
 - shorten the course of chemotherapy for active TB
 - decrease relapse or reinfection rates
What Type of Immune Response Should be Elicited by an “ideal” TB Vaccine

Prophylactic
- Elicit a protective response from a naïve-like baseline
- Pulmonary tissue resident T-cell memory
- Functional antibodies patrolling lung spaces
 - Orchestrate Mtb killing
 - Attract and activate innate cells
 - Antibody-dependent cellular phagocytosis
 - Antibody-dependent cellular cytotoxicity
- Rapid recall response that traffics to lung
- Long-lasting memory response

Therapeutic
- Elicit an immediate effector response through boosting and redirect existing response
- T cells trafficking to lung and inside lesions
 - Lethal effector functions within inflamed environment and amidst moderate antigen load
 - Avoid exacerbating disease and inducing harmful pathology
- Functional antibodies reach lesion interior
- Durable memory to protect from re-infection
Current TB Vaccine Landscape

<table>
<thead>
<tr>
<th>Type of Vaccine</th>
<th>Candidate</th>
<th>Stage</th>
<th>Potential Advantages / Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein Subunit</td>
<td>M72/AS01E</td>
<td>Phase 2b</td>
<td>Safety - safety/reacto varies</td>
</tr>
<tr>
<td></td>
<td>H56:IC31</td>
<td>Phase 2a</td>
<td>Immunology - offers multivalency, both T cell and Ab response</td>
</tr>
<tr>
<td></td>
<td>H4:IC31</td>
<td>Phase 2a</td>
<td>Manufacture – easy, locally produced, cost varies by adjuvant</td>
</tr>
<tr>
<td></td>
<td>ID93 + GLA-SE</td>
<td>Phase 2a</td>
<td></td>
</tr>
<tr>
<td>Viral Vector</td>
<td>Ad5 Ag85A</td>
<td>Phase 1</td>
<td>Safety - safety/reacto varies</td>
</tr>
<tr>
<td></td>
<td>ChAdOx185A/MVA 85A</td>
<td>Phase 1</td>
<td>Immunology – few antigens, strong T cell response, low antibody response</td>
</tr>
<tr>
<td></td>
<td>TB/FLU-04L</td>
<td>Phase 2a</td>
<td>Manufacture – ease? cost?</td>
</tr>
<tr>
<td>Killed / Inactivated / Extract</td>
<td>Vacciae</td>
<td>Phase 3</td>
<td>Safety - safety/reacto could vary?</td>
</tr>
<tr>
<td></td>
<td>DAR-901</td>
<td>Phase 2b</td>
<td>Immunology – many antigens but individual variability?</td>
</tr>
<tr>
<td></td>
<td>RUTI</td>
<td>Phase 2a</td>
<td>Manufacture – ease? consistency? in country? cost?</td>
</tr>
<tr>
<td>Live / Attenuated</td>
<td>VPM 1002</td>
<td>Phase 3</td>
<td>Safety - safety/reacto could be an issue</td>
</tr>
<tr>
<td></td>
<td>MTBVAC</td>
<td>Phase 1</td>
<td>Immunology – many antigens but individual variability?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Manufacture – ease? consistency? In country? cost?</td>
</tr>
</tbody>
</table>
ID93 + GLA-SE

- **ID93** is a fusion of 4 Mtb antigens with diverse roles, recognized in exposed individuals, protection in mouse models, and no human sequence homology
 - *Rv1813* - Up-regulated under hypoxic conditions
 - *Rv2608* - PPE protein, outer-membrane associated
 - *Rv3619* - EsX protein family of secreted virulence factors
 - *Rv3620* - EsX protein family of secreted virulence factors

- **GLA-SE** is a synthetic TLR-4 agonist adjuvant formulated in a squalene oil in water nano-emulsion
 - *Demonstrated safety thus far*— another TLR4 ligand adjuvant has been approved for licensure
 - *Induces Th1-biasing response* (even in existing strong Th2 environment)
 - Readily *scalable* for *local production* at *low cost*

<table>
<thead>
<tr>
<th>Total people</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID93 + GLA-SE > 200</td>
</tr>
<tr>
<td>GLA-SE > 1000</td>
</tr>
</tbody>
</table>
Pre-Clinical Data: Proof of principle in mice, guinea pigs, and non-human primates

Prophylactic

Therapeutic
TBVPX-113: Phase 1a Study in the US

- **Design**: first in human, phase 1, randomized, double-blind, dose-escalation
- **Population**: 60 BCG-, QFT-, healthy adults
- **Safety**: good
- **Immunogenicity results**:
 - GLA-SE increases T cell magnitude and polyfunctionality
 - GLA-SE increases antibody response; IgG1 and IgG3 but not IgG2 or IgG4
 - *Multi-functional* antibodies post ID93+GLA-SE vaccination

Poster by Day et al.
GLA-SE increases antibody functionality

A

IFNγ

<table>
<thead>
<tr>
<th>Day0</th>
<th>Day84</th>
<th>Day0</th>
<th>Day84</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID93</td>
<td>ID93+GLA</td>
<td>ID93</td>
<td>ID93+GLA</td>
</tr>
</tbody>
</table>

MIP1β

<table>
<thead>
<tr>
<th>Day0</th>
<th>Day84</th>
<th>Day0</th>
<th>Day84</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID93</td>
<td>ID93+GLA</td>
<td>ID93</td>
<td>ID93+GLA</td>
</tr>
</tbody>
</table>

CD107a

<table>
<thead>
<tr>
<th>Day0</th>
<th>Day84</th>
<th>Day0</th>
<th>Day84</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID93</td>
<td>ID93+GLA</td>
<td>ID93</td>
<td>ID93+GLA</td>
</tr>
</tbody>
</table>

ADCP

<table>
<thead>
<tr>
<th>Day0</th>
<th>Day84</th>
<th>Day0</th>
<th>Day84</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID93</td>
<td>ID93+GLA</td>
<td>ID93</td>
<td>ID93+GLA</td>
</tr>
</tbody>
</table>

B

ID93

- IgG1
- IgG2
- IgG3
- IgG4
- IgM
- IgA1
- IgA2

C

Polyfunctionality

Data Courtesy of Lennette Lu and Galit Alter, Ragon Institute
TBVPX-114: Phase 1b in South Africa

- **Design:** randomized, double-blind, dose-escalation
- **Population:** 66 BCG+, QFT+/-, adults
- **Safety:** good
- **Immunogenicity:**
 - More robust CD4 responses in QFT+ adults suggests boosting from natural infection
 - QFT+ express more IFN-γ
 - Multivalent vaccine increases complexity of T-cell response
 - Tem (immediate effect) + Tcm (long lasting)
Multivalency lends complexity for CD4 T cell responses

Rv2608
Whole blood assay data from Adam Penn-Nicolson and team, SATVI

Rv3620

Vaccination on Day 0, Day 28, Day 112

A spectrum of T cell phenotypes are induced by individual antigens: potentially with diverse functionalities
TBVPX-203: Phase 2a in South Africa

- **Design**: randomized, double-blind, placebo-controlled
- **Population**: 60 HIV-, BCG+, treated TB patients
- **Safety**: good
- **Interim immunogenicity data** on 1st cohort
 A. CD4 T cells boosted similarly to QFT+ individuals
 B. Antibody responses appear higher than in QFT+ individuals

Preliminary conclusion: Post TB treatment patients are not immunosuppressed in ways that impair T-cell or antibody responses to ID93 + GLA-SE
Clinical Trials with ID93 + GLA-SE

Completed Trials

Phase 1
TBVPX-113
N=60
- BCG- QFT-

Phase 1b
TBVPX-114
N=66
- BCG+ QFT-
- BCG+ QFT+

Phase 2a
TBVPX-203
N=60
- BCG+ QFT+
- TB patients

PoR
Phase 2b
TBVPX-204
N=840
- BCG+ QFT+
- TB patients

Planned Trials

Phase 1
DMID 12-0109
Liposomal
N=70
- BCG- QFT-

Phase 1
TBVPX-120
Lyophilized
N=48
- BCG- QFT-

Pol
Phase 2
N=180
Quratis
- BCG- QFT-
- Healthcare workers

Therapeutic
Phase 1/2

Therapeutic
Phase 1/2

BCG+ QFT+
BCG+ DS TB patients
BCG+ MDR patients

BCG+ MDR patients
Conclusion:

- **ID93 antigens are unique and diverse**: Rv2608, Rv3619, Rv3620, Rv1813
 - PE/PPE family, ESX-family, hypoxia-related
- **GLA-SE adjuvant appears safe and is amenable to low cost local manufacture**
 - TLR4-agonist target
 - Synthetic
 - readily scalable, low cost
 - is being manufactured in endemic countries
 - Dose sparing
- **Immune response profile – Th1 with strong functional antibody responses**
 - Spectrum of CD4 T cell differentiation and memory profiles
 - Most functional IgG subclasses against all 4 antigens
- **Acceptable safety profile** in Mtb-naïve, Mtb-infected, and TB patients at end of treatment
- **Poised for**
 - Phase 2b proof of concept testing for prevention of recurrence in treated TB patients, prevention of infection/disease
 - Safety testing in TB patients during treatment (DS and MDR)
Acknowledgements

TBVPX-113, -114, -203, DMID 12-01009 participants, study teams, clinical sites

IDRI Clinical/Regulatory
 Anna Marie Beckmann
 Jill Ashman
 Zachary Sagawa
 Aude Frevol

IDRI Clinical Immunology
 Julie Vergara
 Tom Rolf
 Sarah Albertson
 Fan-Chi Hsu

IDRI GMP Operations

IDRI Adjuvants & Formulations
 Rhea Coler
 Corey Casper
 Steve Reed

Desmond Tutu HIV Foundation
 Linda Gail-Bekker

Stellenbosch University SU-IRG
 Gerhard Walzl
 Andreas Diacon
 Nelita Du Plessis

TASK

SATVI
 Adam Penn-Nicholson
 Erica Smit
 Thomas Scriba
 Michele Tameris
 Mark Hatherill
 Angelique Luabeya
 Justin Shenje

Aeras
 Ann Ginsberg
 Dave Hokey
 Kathryn Rutkowski
 Ruth Ellis
 Tom Evans

Ragon Institute
 Lennette Lu
 Galit Alter

Yonsei University
 Ray Cho
 Hyejon Lee

Quratis
 Yu Hwa Choi
 Rosa Oh
 Ed Cho

Gennova Biopharmaceuticals
Afrigen Biologics